From the negative side of the molecule.:)
Answer:
0,040 M
Explanation:
The global reaction of the problem is:
Al(OH) (s) + OH⁻ ⇄ Al(OH)₂⁻(aq) K= 40
The equation of equilibrium is:
K = ![\frac{[Al(OH)_{2} ^-]}{[Al(OH)][OH^-]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BAl%28OH%29_%7B2%7D%20%5E-%5D%7D%7B%5BAl%28OH%29%5D%5BOH%5E-%5D%7D)
The concentration of OH⁻ is:
pOH = 14 - pH = <em>3</em>
pOH = -log [OH⁻]
[OH⁻] = 1x10⁻³
Thus:
40 = ![\frac{[Al(OH)_{2} ^-]}{[Al(OH)][1x10^{-3}]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BAl%28OH%29_%7B2%7D%20%5E-%5D%7D%7B%5BAl%28OH%29%5D%5B1x10%5E%7B-3%7D%5D%7D)
<em>0,04M =
</em>
This means that 0,04 M are the number of moles that the solvent can dissolve in 1L, in other words, solubility.
I hope it helps!
Answer:
New volume is 14.35 mL
Explanation:
When a system of a gas keeps on constant its temperature and number of moles, the pressure is modified indirectly proportional to the volume:
Pressure increased → Volume decreased
Pressure decreased → Volume increased.
The relation you have to apply is: P₁ . V₁ = P₂. V₂
1.23 atm . 35 mL = 3 atm . V₂
(1.23 atm . 35 mL / 3 atm) = V₂
V₂ = 14.35 mL
Answer:
You can boil or evaporate the water and the salt will be left behind as a solid. If you want to collect the water, you can use distillation. This works because salt has a much higher boiling point than water. One way to separate salt and water at home is to boil the salt water in a pot with a lid.
Explanation:
Answer:
Inorder to extract the ion first of all we have to go through three steps.
calcianation. smelting
Explanation: