The answer is: volume of ammonia gas is 7.4 L.
Chemical reaction: 6NO + 4NH₃ → 5N₂ + 6H₂O.
m(NO) = 15 g; mass of nitrogen(II) oxide.
M(NO) = 30 g/mol; molar mass of nitrogen(II) oxide.
V(NH₃) = ?
n(NO) = 15 g ÷ 30 g/mol.
n(NO) = 0.5 mol; amount of nitrogen(II) oxide.
From chemical reaction: n(NO) : n(NH₃) = 6 : 4.
0.5 mol : n(NH₃) = 6 : 4.
n(NH₃) = 0.33 mol; amount of ammonia.
Vm = 22.4 L/mol; molar volume at STP.
V(NH₃) = 0.33 mol · 22.4 L/mol..
V(NH₃) = 7.4 L.
Answer:

Explanation:
Hello.
In this case, considering that 1 atm equals 1.01 kPa, we can compute the pressure in kPa first as shown below:

Now, we convert kPa to Pa, considering 1 kPa equals 1000 Pa:

Now, since Pa is equal to N/m², and 1 m equals 100 cm, the pressure in newton per square centimeter turns out:

Best regards.
This is because oxygen (2.8.6) requires two electrons on its valence shell to attain stable configuration (2.8.8). Hydrogen (1) on the other hand requires one electron on its valence shell to attain stable configuration (2). Therefore in a covalent bond, it requires two hydrogen and one oxygen to share electrons and achieve stable configuration.
Answer:
The equilibrium position shifts to the right, in accordance to the constraint principle