It is how much the x values can expand on a graph
<h3>
Answer: Choice A</h3>
![x^2\left(\sqrt[4]{x^2}\right)](https://tex.z-dn.net/?f=x%5E2%5Cleft%28%5Csqrt%5B4%5D%7Bx%5E2%7D%5Cright%29)
=====================================================
Explanation:
The fourth root of x is the same as x^(1/4)
I.e,
![\sqrt[4]{x} = x^{1/4}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bx%7D%20%3D%20x%5E%7B1%2F4%7D)
The same applies to x^10 as well
![\sqrt[4]{x^{10}} = \left(x^{10}\right)^{1/4}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bx%5E%7B10%7D%7D%20%3D%20%5Cleft%28x%5E%7B10%7D%5Cright%29%5E%7B1%2F4%7D)
Multiply the exponents 10 and 1/4 to get 10/4
![\sqrt[4]{x^{10}} = \left(x^{10}\right)^{1/4} = x^{10*1/4} = x^{10/4}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bx%5E%7B10%7D%7D%20%3D%20%5Cleft%28x%5E%7B10%7D%5Cright%29%5E%7B1%2F4%7D%20%3D%20x%5E%7B10%2A1%2F4%7D%20%3D%20x%5E%7B10%2F4%7D)
![\sqrt[4]{x^{10}} = x^{10/4}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bx%5E%7B10%7D%7D%20%3D%20x%5E%7B10%2F4%7D)
-----------------------
If we have an expression in the form x^(m/n), with m > n, then we can simplify it into an equivalent form as shown below
![x^{m/n} = x^a\sqrt[n]{x^b}](https://tex.z-dn.net/?f=x%5E%7Bm%2Fn%7D%20%3D%20x%5Ea%5Csqrt%5Bn%5D%7Bx%5Eb%7D)
The 'a' and 'b' are found through dividing m/n
m/n = a remainder b
'a' is the quotient, b is the remainder
-----------------------
The general formula can easily be confusing, so let's replace m and n with the proper numbers. In this case, m = 10 and n = 4
m/n = 10/4 = 2 remainder 2
We have a = 2 and b = 2
So
![x^{m/n} = x^a\sqrt[n]{x^b}](https://tex.z-dn.net/?f=x%5E%7Bm%2Fn%7D%20%3D%20x%5Ea%5Csqrt%5Bn%5D%7Bx%5Eb%7D)
turns into
![x^{10/4} = x^2\sqrt[4]{x^2}](https://tex.z-dn.net/?f=x%5E%7B10%2F4%7D%20%3D%20x%5E2%5Csqrt%5B4%5D%7Bx%5E2%7D)
which means
![\sqrt[4]{x^{10}} = {x^2} \sqrt[4]{x^2}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bx%5E%7B10%7D%7D%20%3D%20%7Bx%5E2%7D%20%5Csqrt%5B4%5D%7Bx%5E2%7D)
Using an exponential function, it is found that the number 131.5 represents the initial value of the plane, in thousands of dollars.
<h3>Exponential function:</h3>
A decaying exponential function is modeled by:

In which:
- A(0) is the initial value.
- r is the decay rate, as a decimal.
In this problem, the function for the value of the airplane after t years is given by:

Hence A(0) = 131.5, which means that the number 131.5 represents the initial value of the plane, in thousands of dollars.
To learn more about exponential functions, you can take a look at brainly.com/question/8935549
Answer:
Two non zero vectors, a and b are parallel when they are scalar multiples of each other such that a = c·b where c is a scalar quantity.
Therefore, in order to find a vector that is parallel to the vector, b = (-2, -1), we multiply the vector, b by a scaler quantity
Step-by-step explanation:
Given that the vector b = (-2, -1) can be written as follows;
b = -2·i - j, we have;
= √((-2)² + (-1)²) = √5
Therefore, we have;
The coordinates of the endpoint of the vector are (-2, 0) and (0, -1)
Therefore, the slope of the vector = (-1 - 0)/(0 - (-2)) = -1/2
The slope of parallel vectors are equal, which gives the slope of the parallel vector = -1/2 = (λ × (-1 - 0))/(λ ×(0 - (-2))
Therefore, a parallel vector is obtained from a vector by multiplying with a scaler product.
A property of rectangles is that opposite sides are congruent. In this case, since QT and RS are opposite sides, they are equal to each other. With this knowledge, you can form the equation
to solve for x.
Firstly, subtract both sides by 8: 
Next, divide both sides by 4 and your answer will be
, or the third option.