Answer:
slope is 1/3
Step-by-step explanation:
notice the points on the line, from the first point go one square up and three to the right, thats how i got 1/3
Answer:
He needs 7 buckets of cement, and 28 buckets of sane.
Step-by-step explanation:
cement : sand
1:4 = 5
35/5 = 7
7*1=7 . Cement
7*4=28 . Sand
Answer:
Step-by-step explanation:
First you need to set up the equation 2/3+1/4/1/2, and we know that there is a stratgey for dividing fractions as well. But first, we need to find the least common fator for 2/3 and 1/4 which is twelve which would be 8/12+3/12 which is 11/12 and 11/12 dividing by 1/2 is 22/12 since all you need to do is do the keep change flip method which would give you an answer of 1 10/12 or 1 5/6
It is the third equation: −512⋅(65⋅13)⋅92=(−512⋅65)⋅(13⋅92)
Associative property means one can group the individual operations arbitrarily without changing the result.
From a standard deck of cards, one card is drawn. What is the probability that the card is black and a
jack? P(Black and Jack)
P(Black) = 26/52 or ½ , P(Jack) is 4/52 or 1/13 so P(Black and Jack) = ½ * 1/13 = 1/26
A standard deck of cards is shuffled and one card is drawn. Find the probability that the card is a queen
or an ace. P(Q or A) = P(Q) = 4/52 or 1/13 + P(A) = 4/52 or 1/13 = 1/13 + 1/13 = 2/13
WITHOUT REPLACEMENT: If you draw two cards from the deck without replacement, what is the
probability that they will both be aces? P(AA) = (4/52)(3/51) = 1/221.
1
WITHOUT REPLACEMENT: What is the probability that the second card will be an ace if the first card is a
king? P(A|K) = 4/51 since there are four aces in the deck but only 51 cards left after the king has been
removed.
WITH REPLACEMENT: Find the probability of drawing three queens in a row, with replacement. We pick
a card, write down what it is, then put it back in the deck and draw again. To find the P(QQQ), we find the
probability of drawing the first queen which is 4/52. The probability of drawing the second queen is also
4/52 and the third is 4/52. We multiply these three individual probabilities together to get P(QQQ) =
P(Q)P(Q)P(Q) = (4/52)(4/52)(4/52) = .00004 which is very small but not impossible.
Probability of getting a royal flush = P(10 and Jack and Queen and King and Ace of the same suit)
What's the probability of being dealt a royal flush in a five card hand from a standard deck of cards? (Note:
A royal flush is a 10, Jack, Queen, King, and Ace of the same suit. A standard deck has 4 suits, each with
13 distinct cards, including these five above.) (NB: The order in which the cards are dealt is unimportant,
and you keep each card as it is dealt -- it's not returned to the deck.)
The probability of drawing any card which could fit into some royal flush is 5/13. Once that card is taken
from the pack, there are 4 possible cards which are useful for making a royal flush with that first card, and
there are 51 cards left in the pack. therefore the probability of drawing a useful second card (given that the
first one was useful) is 4/51. By similar logic you can calculate the probabilities of drawing useful cards for
the other three. The probability of the royal flush is therefore the product of these numbers, or
5/13 * 4/51 * 3/50 * 2/49 * 1/48 = .00000154