B
. They are large and occur at shallow depths near the where the plates diverge.
Answer:
275g
Explanation:
Depending on the molar mass you are given, you can use that to solve this.
(I'm going based on my science class' molar mass of sulphur being 32.07g/mol)
Starting off, the formula for finding moles is
n=m/M (moles = mass / molar mass)
We can manipulate this equation to solve for mass.
m=Mn
now fill in what we now.
m = 32.07*8.56
mass = 274.5192
Now round for significant digits (if you are needed to do)
mass = 275g
Answer: Yes it is. Rust would be considered a chemical reaction because it changes the chemical makeup of the metal.
Explanation:
Explanation:
P1V1 = nRT1
P2V2 = nRT2
Divide one by the other:
P1V1/P2V2 = nRT1/nRT2
From which:
P1V1/P2V2 = T1/T2
(Or P1V1 = P2V2 under isothermal conditions)
Inverting and isolating T2 (final temp)
(P2V2/P1V1)T1 = T2 (Temp in K).
Now P1/P2 = 1
V1/V2 = 1/2
T1 = 273 K, the initial temp.
Therefore, inserting these values into above:
2 x 273 K = T2 = 546 K, or 273 C.
Thus, increasing the temperature to 273 C from 0C doubles its volume, assuming ideal gas behaviour. This result could have been inferred from the fact that the the volume vs temperature line above the boiling temperature of the gas would theoretically have passed through the origin (0 K) which means that a doubling of temperature at any temperature above the bp of the gas, doubles the volume.
From the ideal gas equation:
V = nRT/P or at constant pressure:
V = kT where the constant k = nR/P. Therefore, theoretically, at 0 K the volume is zero. Of course, in practice that would not happen since a very small percentage of the volume would be taken up by the solidified gas.
<span>when two or more molecules interact and the molecules change.</span>