What does it happen in smallest scale?
<span>You have to look for "DUPRE' EQUATION" which treat about </span>
<span>"TWO-PHASE INTERFACIAL FORCEs". </span>
<span>At boundary surface between two aggregation phases, you may attribute upper energy level to molecules standing at the boundary zone. So, it has to define INTERFACIAL FORCEs WHICH ACT TO REMODEL SHAPE AND EXTENSION OF MEETING PHASEs. </span>
<span>In your case, Water's Droplet is a liquid phase surrounded by Air (e.g. gas phase) and Interfacial Forces act to dominate Boundary-Surface. </span>
<span>Mathematically, smallest possible Surface comes to SPHERICAL SHAPE. </span>
Answer:
a
Explanation:
Mixture is a combination of two or more elements and sodium is an element with a chemical symbol Na and a charge of +1 and chloride too is an element with a chemical symbol Cl and a charge of -1 so when these two elements are combine it form a chemical solution called Sodium chloride
The question is incomplete, complete question is;
A solution of
is added dropwise to a solution that contains
of
and
and
.
What concentration of
is need to initiate precipitation? Neglect any volume changes during the addition.
value 
value 
What concentration of
is need to initiate precipitation of the first ion.
Answer:
Cadmium carbonate will precipitate out first.
Concentration of
is need to initiate precipitation of the cadmium (II) ion is
.
Explanation:
1) 
The expression of an solubility product of iron(II) carbonate :
![K_{sp}=[Fe^{2+}][CO_3^{2-}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BFe%5E%7B2%2B%7D%5D%5BCO_3%5E%7B2-%7D%5D)
![2.10\times 10^{-11}=0.58\times 10^{-2} M\times [CO_3^{2-}]](https://tex.z-dn.net/?f=2.10%5Ctimes%2010%5E%7B-11%7D%3D0.58%5Ctimes%2010%5E%7B-2%7D%20M%5Ctimes%20%5BCO_3%5E%7B2-%7D%5D)
![[CO_3^{2-}]=\frac{2.10\times 10^{-11}}{1.15\times 10^{-2} M}](https://tex.z-dn.net/?f=%5BCO_3%5E%7B2-%7D%5D%3D%5Cfrac%7B2.10%5Ctimes%2010%5E%7B-11%7D%7D%7B1.15%5Ctimes%2010%5E%7B-2%7D%20M%7D)
![[CO_3^{2-}]=1.826\times 10^{-9}M](https://tex.z-dn.net/?f=%5BCO_3%5E%7B2-%7D%5D%3D1.826%5Ctimes%2010%5E%7B-9%7DM)
2) 
The expression of an solubility product of cadmium(II) carbonate :
![K_{sp}=[Cd^{2+}][CO_3^{2-}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BCd%5E%7B2%2B%7D%5D%5BCO_3%5E%7B2-%7D%5D)
![1.80\times 10^{-14}=0.58\times 10^{-2} M\times [CO_3^{2-}]](https://tex.z-dn.net/?f=1.80%5Ctimes%2010%5E%7B-14%7D%3D0.58%5Ctimes%2010%5E%7B-2%7D%20M%5Ctimes%20%5BCO_3%5E%7B2-%7D%5D)
![[CO_3^{2-}]=\frac{1.80\times 10^{-14}}{0.58\times 10^{-2} M}](https://tex.z-dn.net/?f=%5BCO_3%5E%7B2-%7D%5D%3D%5Cfrac%7B1.80%5Ctimes%2010%5E%7B-14%7D%7D%7B0.58%5Ctimes%2010%5E%7B-2%7D%20M%7D)
![[CO_3^{2-}]=3.103\times 10^{-12} M](https://tex.z-dn.net/?f=%5BCO_3%5E%7B2-%7D%5D%3D3.103%5Ctimes%2010%5E%7B-12%7D%20M)
On comparing the concentrations of carbonate ions for both metallic ions, we can see that concentration to precipitate out the cadmium (II) carbonate from the solution is less than concentration to precipitate out the iron (II) carbonate from the solution.
So, cadmium carbonate will precipitate out first.
And the concentration of carbonate ions to start the precipitation of cadmium carbonate we will need concentration of carbonate ions greater than the
concentration.
I think a controlled experiment
Answer:
chlorophyll
Explanation:
Plants are green because their cells contain chloroplast which have pigment which absorb deep-blue and red light so that the rest of the sunlight spectrum is being reflected, causing the plants to look green.