9514 1404 393
Answer:
38
Step-by-step explanation:
The product of the given numbers is 38.4888. Rounding this to two significant digits gets you 38.
Your question seems incomplete
is there an image supposed to be attached to it
Answer:

Step-by-step explanation:
Let the equation of the perpendicular line is,
y = mx + b
where m = slope of the line
b = y-intercept
From the graph, slope of the line passing through (0, -1) and (3, 1),
m' =
m' = 
m' = 
To get the slope (m) of this line we will use the property of perpendicular lines,
m × m' = (-1)
m ×
= -1
m = 
Equation of the perpendicular line will be,

x-intercept of the line is (-3) therefore, point on the line is (-3, 0)
0 = 
b = 
Equation of the line will be,

Let p(x) be a polynomial, and suppose that a is any real
number. Prove that
lim x→a p(x) = p(a) .
Solution. Notice that
2(−1)4 − 3(−1)3 − 4(−1)2 − (−1) − 1 = 1 .
So x − (−1) must divide 2x^4 − 3x^3 − 4x^2 − x − 2. Do polynomial
long division to get 2x^4 − 3x^3 − 4x^2 – x – 2 / (x − (−1)) = 2x^3 − 5x^2 + x –
2.
Let ε > 0. Set δ = min{ ε/40 , 1}. Let x be a real number
such that 0 < |x−(−1)| < δ. Then |x + 1| < ε/40 . Also, |x + 1| <
1, so −2 < x < 0. In particular |x| < 2. So
|2x^3 − 5x^2 + x − 2| ≤ |2x^3 | + | − 5x^2 | + |x| + | − 2|
= 2|x|^3 + 5|x|^2 + |x| + 2
< 2(2)^3 + 5(2)^2 + (2) + 2
= 40
Thus, |2x^4 − 3x^3 − 4x^2 − x − 2| = |x + 1| · |2x^3 − 5x^2
+ x − 2| < ε/40 · 40 = ε.