Answer:
I think it's C sorry if I am wrong
.5 mols
Assuming that your 2.0 m is an M for molarity
I used the formula M=number of mold/L
Converted 250mL to .250L by dividing by 1000
Answer:
357 g of the transition metal are present in 630 grams of the compound of the transition metal and iodine
Explanation:
In any sample of the compound, the percentage by mass of the transition metal is 56.7%. This means that for a 100 g sample of the compound, 56.7 g is the metal while the remaining mass, 43.3 g is iodine.
Given mass of sample compound = 630 g
Calculating the mass of iodine present involves multiplying the percentage by mass composition of the metal by the mass of the given sample;
56.7 % = 56.7/100 = 0.567
Mass of transition metal = 0.567 * 630 = 357.21 g
Therefore, the mass of the transition metal present in 630 g of the compound is approximately 357 g
Answer: The empirical formula is
.
Explanation:
Mass of C = 1.71 g
Mass of H = 0.287 g
Step 1 : convert given masses into moles.
Moles of C = 
Moles of H = 
Step 2 : For the mole ratio, divide each value of moles by the smallest number of moles calculated.
For C =
For H =
The ratio of C: H = 1: 2
Hence the empirical formula is
.
Answer:
Yes. The solution would be optically active.
Explanation:
Diastereomer are defined as the image that is non mirror and non -identical. It is made up of two stereoisomers. They are formed when the two stereoisomers or more than two stereoisomers of the compound have the same configuration at the equivalent stereocenters.
In the given context, as the product given is a diastereomeric mixture, the product would have an optical activity in total.
So the answer is Yes.