Answer:
The enthalpy of the reaction is coming out to be -380.16 kJ.
Explanation:
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as 
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H_{rxn}=\sum [n\times \Delta H_f(product)]-\sum [n\times \Delta H_f(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f%28product%29%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f%28reactant%29%5D)
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(2 mol\times \Delta H_f_{(N_2O)})+(2 mol\times\Delta H_f_{(H_2O)} )]-[(1 mol\times \Delta H_f_{(N_2H_4)})+(1 mol\times \Delta H_f_{(N_2O_4)})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%282%20mol%5Ctimes%20%5CDelta%20H_f_%7B%28N_2O%29%7D%29%2B%282%20mol%5Ctimes%5CDelta%20H_f_%7B%28H_2O%29%7D%20%29%5D-%5B%281%20mol%5Ctimes%20%5CDelta%20H_f_%7B%28N_2H_4%29%7D%29%2B%281%20mol%5Ctimes%20%5CDelta%20H_f_%7B%28N_2O_4%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H_{rxn}=[(2 mol\times 81.6 kJ/mol)+2 mol\times -241.8 kJ/mol)]-[(1 mol\times (50.6 kJ/mol))+(1 mol\times (9.16))]\\\\\Delta H_{rxn}=-380.16 kJ](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%282%20mol%5Ctimes%2081.6%20kJ%2Fmol%29%2B2%20mol%5Ctimes%20-241.8%20kJ%2Fmol%29%5D-%5B%281%20mol%5Ctimes%20%2850.6%20kJ%2Fmol%29%29%2B%281%20mol%5Ctimes%20%289.16%29%29%5D%5C%5C%5C%5C%5CDelta%20H_%7Brxn%7D%3D-380.16%20kJ)
Hence, the enthalpy of the reaction is coming out to be -380.16 kJ.
Answer:
Option-C (27.36% Na, 1.20% H, 14.30% C, and 57.14% O)
Explanation:
<em>Percent Composition</em> is defined as the <u><em>%age by mass of each element present in a compound</em></u>. Therefore, it is a relative amount of each element present in a compound.
Calculating Percent Composition of NaHCO₃:
1: Calculating Molar Masses of all elements present in NaHCO₃:
a) Na = 22.99 g/mol
b) H = 1.01 g/mol
c) C = 12.01 g/mol
d) O₃ = 16.0 × 3 = 48 g/mol
2: Calculating Molecular Mass of NaHCO₃:
Na = 22.99 g/mol
H = 1.01 g/mol
C = 12.01 g/mol
O₃ = 48 g/mol
----------------------------------
Total 84.01 g/mol
3: Divide each element's molar mass by molar mass of NaHCO₃ and multiply it by 100:
For Na:
= 22.99 g.mol⁻¹ ÷ 84.01 g.mol⁻¹ × 100
= 27.36 %
For H:
= 1.01 g.mol⁻¹ ÷ 84.01 g.mol⁻¹ × 100
= 1.20 %
For C:
= 12.01 g.mol⁻¹ ÷ 84.01 g.mol⁻¹ × 100
= 14.29 % ≈ 14.30 %
For O:
= 48.0 g.mol⁻¹ ÷ 84.01 g.mol⁻¹ × 100
= 57.13 % ≈ 57.14 %
Answer:
You are moving because the Earth and everything in our solar system is constantly moving. ... As the Earth rotates, it also moves, or revolves, around the Sun. The Earth's path around the Sun is called its orbit. It takes the Earth one year, or 365 1/4 days, to completely orbit the Sun.
The way I would explain it is quite difficult to understand, so this is what Google says. "The wavelength (or equivalently, frequency) of the photon is determined by the difference in energy between the two states. These emitted photons form the element's spectrum. The fact that only certain colors appear in an element's atomic emission spectrum means that only certain frequencies of light are emitted." I hope this helped.