1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yaroslaw [1]
3 years ago
11

RRC #2 What is the radius of this circle? The radius of the circle is 24cm​

Mathematics
1 answer:
poizon [28]3 years ago
7 0

Answer:

25cm

Step-by-step explanation:

The radius of circles is 7cm,24cm

Area of smaller circle is πr

2

⟹π×7

2

⟹49π

Area of Larger circle is πr

2

⟹π×24

2

⟹576π

Area of required circle ⟹576π+49π

⟹625π

Radius of circle is given by

625

=25

You might be interested in
If anyone knows about definite integrals for calculus then please I request help! I
kicyunya [14]

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

4 0
3 years ago
A single gram of a certain metallic substance has 0.52 g of copper and 0.25 g of zinc the remaining portion of the substance is
andrezito [222]
Ben's estimate gives 7 g of nickel; the actual amount is 8.03 g.

In 1 g of the substance, there is 0.52 g of copper and 0.25 g of zinc; this gives 
0.52+0.25 = 0.77 g of the substance.

The remaining part of the substance is nickel:
1-0.77 = 0.23 g of nickel.

Using Ben's estimate, 0.2 g of nickel per gram of substance, we have
0.2(35) = 7 g of nickel in 35 g of the substance.

The actual amount is 0.23(35) = 8.03 g of nickel in 35 g of the substance.
6 0
3 years ago
How do I find the area for this?
Olegator [25]

Answer: when u doing area know you are multiplying hope i help

Step-by-step explanation:

3 0
3 years ago
You work 4 hours on Monday, 4.5 hours on Tuesday, 7.25 hours on Thursday, and 12 hours on Saturday. If you get paid $11.52 per h
likoan [24]

Answer:

319.68

Step-by-step explanation:

you multyply 11.52 per each hour and then add everything up

Wish this helped you

7 0
3 years ago
Solve 33 1/2 of 48<br><br> Plz thanks &lt;3
SIZIF [17.4K]

Answer:

1608

Step-by-step explanation:

5 0
3 years ago
Other questions:
  • Please help me solve this priblem
    10·2 answers
  • Identify the pattern 192,96,48,24,.... write the next 3 patterns
    13·1 answer
  • What is the perimeter of the triangle.
    13·1 answer
  • 11. Solve for x: x3 + 3x2 + 3x + 2 = 0
    13·1 answer
  • A TUB USES 20 GALLONS. a shower uses 15 gallons. if 40 people take a bath instead of a shower, how much extra water is used?
    5·2 answers
  • A motorcycle purchased for 12,500 today will be valued 7% less each year. How much could you expect to receive for the motorcycl
    11·1 answer
  • If one side of a triangle is 70 degrees and the other side is 37 Degress what is the length of the third side
    7·2 answers
  • Assume that y varies directly with x. If y = -5 when
    10·1 answer
  • For the data in the table, tell whether y varies directly with x. If it does, write an equation for the direct variation.
    8·1 answer
  • What is the value of h?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!