Answer:
1 : equal in force, amount, or value also : equal in area or volume but not superposable a square equivalent to a triangle. 2a : like in signification or import. b : having logical equivalence equivalent statements. 3 : corresponding or virtually identical especially in effect or function.
Step-by-step explanation:
Answer:
D
Step-by-step explanation:
Answer:
Step-by-step explanation:
It is conjectured that the Mandelbrot set is locally connected. This famous conjecture is known as MLC (for Mandelbrot locally connected). By the work of Adrien Douady and John H. Hubbard, this conjecture would result in a simple abstract "pinched disk" model of the Mandelbrot set. In particular, it would imply the important hyperbolicity conjecture mentioned above.
The work of Jean-Christophe Yoccoz established local connectivity of the Mandelbrot set at all finitely renormalizable parameters; that is, roughly speaking those contained only in finitely many small Mandelbrot copies.[19] Since then, local connectivity has been proved at many other points of {\displaystyle M}M, but the full conjecture is still open.
Answer:
x ≥ -1/2
Step-by-step explanation:
We know that we cannot graph imaginary numbers. Therefore, our <em>x </em>value has to be greater than or equal to 0:
To find our domain, we need to set the square root equal to zero:
√(4x + 2) = 0
4x + 2 = 0
4x = -2
x = -1/2
We now know that no value below -1/2 can be used or we will get an imaginary number. Therefore, our answer is x ≥ -1/2
Alternatively, we can graph the function and analyze domain:
Answer:
Step-by-step explanation: