The formula for average velocity between two times t1 and t2 of the position function f(x) is (f(t2)-f(t1)) / (t2-t1)
Plugging the values in for the first time period we get (f(2.5)-f(2)) / (2.5-2)
=> (f(2.5)-f(2)) / 0.5
f(2) will be the same for all 4 time periods and is
48(2)-16(2)^2 = 32
Now we plugin the other values
f(2.5) = 48(2.5)-16(2.5)^2 = 20
f(2.1) = 48(2.1)-16(2.1)^2 = 30.25
etc.
f(2.05) = 31.16
f(2.01) = 31.8384
Now plug these values into the formula
(20-32)/0.5 = -24
(30.25-32)/0.1 = -17.5
etc.
= -16.8
= -16.16
Final answer:
2.5s => -24 ft/s
2.1s => -17.5 ft/s
2.05 => -16.8 ft/s
2.01 => -16.16 ft/s
Hope I helped :)
The third is because the prove is x = fifteen and if a number is next to a letter, it means multiply, sorry I could only do one.
12 - all divisible by it (2*12=24, 3*12=36, 12*5=60)
9514 1404 393
Answer:
no
Step-by-step explanation:
If triangle side lengths are an arithmetic sequence (have a common difference), they must have the ratios 3:4:5 to make a right triangle. Here, the ratios of the side lengths are 4:5:6, so will not be a right triangle.
First write the equation in slope-intercept form which is more commonly known as <em>y = mx + b</em> form where the <em>m </em>or the coefficient of the x term represents the slope of the <em>b</em> or the constant term represents the y-intercept.
Subtract 2x from both sides to get <em>y = -2x - 4</em>.
I put the x term first because that's how it is in y = mx + b form.
Now we can see that the <em>b</em> or the constant term is -4.
We can write this as the ordered pair (0, -4).
Keep in mind when writing a y-intercept as an ordered pair, your x-coordinate will always be 0 in the ordered pair.