Answer:
m<Q = 133°
Step-by-step explanation:
From the question given above, the following data were obtained:
m<P = (x + 13)°
m<Q = (10x + 13)°
m<R = (2x – 2)°
m<Q =?
Next, we shall determine the value of x. This can be obtained as follow:
m<P + m<Q + m<R = 180 (sum of angles in a triangle)
(x + 13)° + (10x + 13)° + (2x – 2)° = 180
x + 13 + 10x + 13 + 2x – 2 = 180
x + 10x + 2x + 13 + 13 – 2 = 180
13x + 24 = 180
Collect like terms
13x = 180 – 24
13x = 156
Divide both side by 13
x = 156 / 13
x = 12
Finally, we shall determine m<Q. This can be obtained as follow:
m<Q = (10x + 13)°
x = 12
m<Q = 10(12) + 13
m<Q = 120 + 13
m<Q = 133°
<span> (a) if 1 woman is randomly selected, find the probability that her height is less than 64 in
using z-score formula:
z-score=(x-mu)/sig
(64-63.5)/2.8
=0.18
thus
P(x<64)=P(z<0.18)-=0.5714
B] </span><span> if 33 women are randomly selected, find the probability that they have a mean height less than 64 in
using the central limit theorem of sample means, we shall have:
2.8/</span>√33=0.49
since n>30 we use z-distribtuion
z(64)=(64-63.5)/0.49=1.191
The
P(x_bar<64)=P(x<1.191)=0.8830
Answer:
(r^9−s^10) (r^18+r^9s^10+s^20)