Answer:
The correct answer is - the large cross-sectional area and greater length of the cytoplasmic core get less resistance than the smaller cross-sectional area.
Explanation:
The greater length and the large cross-sectional area of the cytoplasmic path or core get less resistance than the resistance of the current path which is the small cross-sectional area of axoplasm. This leads it to greater resistance than the resistance of the current path through the extracellular fluid.
Other than this there is also an unequal distribution of the ions that leads to the increase in potential difference as higher Na+ ions present in cytoplasm and high amount of K+ ion present in axoplasm.
Answer:
Molecular genetic approaches to the study of plant metabolism can be traced back to the isolation of the first cDNA encoding a plant enzyme (Bedbrook et al., 1980), the use of the Agrobacterium Ti plasmid to introduce foreign DNA into plant cells (Hernalsteens et al., 1980) and the establishment of routine plant transformation systems (Bevan, 1984; Horsch et al., 1985). It became possible to express foreign genes in plants and potentially to overexpress plant genes using cDNAs linked to strong promoters, with the aim of modifying metabolism. However, the discovery of the antisense phenomenon of plant gene silencing (van der Krol et al., 1988; Smith et al., 1988), and subsequently co‐suppression (Napoli et al., 1990; van der Krol et al., 1990), provided the most powerful and widely‐used methods for investigating the roles of specific enzymes in metabolism and plant growth. The antisense or co‐supression of gene expression, collectively known as post‐transcriptional gene silencing (PTGS), has been particularly versatile and powerful in studies of plant metabolism. With such molecular tools in place, plant metabolism became accessible to investigation and manipulation through genetic modification and dramatic progress was made in subsequent years (Stitt and Sonnewald, 1995; Herbers and Sonnewald, 1996), particularly in studies of solanaceous species (Frommer and Sonnewald, 1995).
It is B, because that is how they produce their scientific name
Because the cells can only use energy in form of ATP.
Its like you can't run a diesel truck on petrol.
Answer:
It;s c (Granite)because "a coarse-grained, felsic igneous rock is not only a granite, it is an intrusive igneous rock that formed from slow cooling and crystallization of a body of magma within the earth's crust. ": )
Explanation: