Take x-2 and insert it into 2x^2 + 3x-2 where the x is located
2x^2 + 3x-2
2(x-2)^2 + 3(x-2)-2
Now work out 2(x-2)^2 + 3(x-2)-2 also follow PEMDAS
2(x-2)^2 + 3(x-2)-2
Since (x-2)^2 is an Exponent, lets work with that first and expand (x-2)^2.
(x-2)^2
(x -2)(x-2)
x^2 -4x + 4
Now Multiply that by 2 because we have that in 2(x-2)^2
(x-2)^2 = x^2 -4x + 4
2(x-2)^2 = 2(x^2 -4x + 4)
2(x^2 -4x + 4) = 2x^2 - 8x + 8
2x^2 - 8x + 8
Now that 2(x-2)^2 is done lets move on to 3(x-2).
Use the distributive property and distribute the 3
3(x-2) = 3x - 6
All that is left is the -2
Now lets put it all together
2(x-2)^2 + 3(x-2)-2
2x^2 - 8x + 8 + 3x - 6 - 2
Now combine all our like terms
2x^2 - 8x + 8 + 3x - 6 - 2
Combine: 2x^2 = 2x^2
Combine: -8x + 3x = -5x
Combine: 8 - 6 - 2 = 0
So all we have left is
2x^2 - 5x
We have that (x) + (x+2) + (x+4) = 126 so 3x + 6 = 126 can be used to find the first integer.
3x + 6 = 126
3x = 120
x = 40
The numbers are 40, 42, 44
Answer:
The 5-hour decay factor for the number of mg of caffeine in Ben's body is of 0.1469.
Step-by-step explanation:
After consuming the energy drink, the amount of caffeine in Ben's body decreases exponentially.
This means that the amount of caffeine after t hours is given by:

In which A(0) is the initial amount and k is the decay rate, as a decimal.
The 10-hour decay factor for the number of mg of caffeine in Ben's body is 0.2722.
1 - 0.2722 = 0.7278, thus,
. We use this to find k.







Then

What is the 5-hour growth/decay factor for the number of mg of caffeine in Ben's body?
We have to find find A(5), as a function of A(0). So


The decay factor is:
1 - 0.8531 = 0.1469
The 5-hour decay factor for the number of mg of caffeine in Ben's body is of 0.1469.