1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NikAS [45]
3 years ago
15

What is 13 + 2x =6x -7

Mathematics
2 answers:
Masja [62]3 years ago
7 0
The answer to 13+2x=6x-7 is x=5
tatyana61 [14]3 years ago
4 0

5=x

Step-by-step explanation:

You might be interested in
Can someone please help on this one?
SIZIF [17.4K]
If you're looking just to enter the numbers from the first row but in the hundredths place

Category 1 will be .30
Category 2 will be .90
4 0
3 years ago
There are 125 members in the school
Igoryamba

Answer:

125x + 5,000 > 25,000

5 0
3 years ago
How many 7-digit phone numbers are possible, assuming that the first digit can’t be a 0 or a 1? (b) re-solve (a), except now ass
sladkih [1.3K]
A. We are going to form 7 digit numbers from the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

where the first digit cannot be 0 or 1.

so we have 8 choices for the 1. digit, and 10 choices for all the other 6 digits.

this means there are 8*10*10*10*10*10*10=8* 10^{6} possible numbers.

b.

consider the numbers which start with 911. There are 10*10*10*10=10 ^{4} such numbers, since for the 4th, 5th, 6th and 7th digits we have 10 choices.

then we remove this number, from the one we found in a:

There are in total 8* 10^{6}-10^{4}=7,990,000 numbers which don't start with 911.


Answer:

a.8*10^{6}
b.7,990,000

3 0
3 years ago
I need help and I’m too lazy to type this out tell me you can’t see the picture
wlad13 [49]
It’s really hard to see the picture
5 0
3 years ago
PLEASE HELP I WILL PICK BRAINLIEST
Mnenie [13.5K]

Answer:

A more complex question has rarely been asked.

Principia Mathematica took nearly a thousand pages to prove that 1+1=2. It does meander a bit, but had they wanted to prove 1+1=2 alone, it could have done so in 500 pages.

Mathematically speaking, the definition of 1 is:

There exists a number such that when multiplied upon an element of a specified set, yields the element of the specified set.

It is also defined as:

1.0000000000000000000000…

.9999999999999999999999999…

as the set of all singletons.

a singleton is a set with exactly 1 element.

These 4 definitions work in tandem with one another.

For example:

1=1

Divide both sides by 3.

1/3=1/3

Rewrite.

1/3=.33333333333333333...

Multiply both sides by 3.

1=.9999999999999999999...

Similarly:

If    =.9999999999999999999...

10=9.99999999999999999...

10=9+.99999999999999...

10=9+

Simplify by subtracting x from both sides.

9=9

=1

.99999999999999999999...=1

As the set of all singletons, 1 is also THE element that represents the set of all single entities.

That is to say: if you have 7 erasers. What you really have is a set of 7 single entities. The definition of 7 becomes: 1 + 1 + 1 + 1 + 1 + 1 + 1; and not as is commonly believed as: 6 + 1.

There is an argument for 7 to be defined as 6 + 1, but this argument is a corollary of the Peano Axioms which in turn argues that there exists a set with absolutely nothing in it {} and a set with exactly something in it {x}. More on this later.

The Principia Mathematica uses Peano's (from the Peano Axioms mentioned earlier) work and notation to expertly slice through the many nuances pertaining to this question.

This is something we will not do; but hopefully, we will also be able to effectively demonstrate why 1 + 1 = 2 in less than 1000 pages.

We will assume these basic principles of number theory:

There exists a number such that when multiplied to an element of a specific set, yields that element of the specific set.

There exists a number such that when added to an element of a specific set, yields that element of the specific set.

If we again assume to have only two sets, a set that is empty: {} containing no elements, and a set that is not empty {x} containing an element. We realize that Consequently, we went from nothing {}, to something {x}. This means that {x} is the successor to {}, as the next step up from nothing, is something.

As such we now have two elements:

Nothing, {}, and something that comes after {}, this something is called the successor, and it is the Successor of nothing.

in written notation we have:

{} and { the Successor of nothing }

Rewritten:

{0, the thing that comes after 0}

Further reworded:

{0, Successor (0) }

Reduced further:

0,(0)

Where S(0) stands in place of ‘the successor’. Further, we know there are an infinite number of possible Natural numbers, and we get:

{0, Successor of 0, the successor of the successor of 0, the successor of the successor of the successor of 0,…}

Further reduced:

0,(0),((0)),(((0))),((((0)))),(((((0)))),…

Further explained:

We know that we had nothing, and added something to it, and got something:

Nothing + Something = Successor of nothing.

0+__=(0)

We also know that there is nothing closer to 0, than the thing that comes after 0.

0+(0)=(0)

This implies that S(0) is the smallest increment possible from natural number to next natural number.

As a consequence, we now have two discovered entities: Something, and Nothing.

Let’s give them names.

We have decided that

Nothing = 0 .

0 = Nothing.

S(0) is the something that comes after nothing.

We define a new symbol: 1, to be: 1 = S(0)

This is to say that 1 IS the symbol that succeeds 0;

We could have drawn any shape to define the number that succeeds 0; we chose to draw a 1.

0+(0)=(0)

0+1=(0)

0+1=1

0,1,((0)),(((0))),((((0)))),(((((0)))),…

We now have definitions for 0, and 1. What about a definition for the thing that comes after one? The successor of 1?

As we know S(0) is the smallest increment available, and we are interested in finding S(0)’s successor we investigate:

The successor to the successor of Nothing:

0+(0)=1;1+(0)=(1)

This reads:

The successor of the successor of nothing IS the successor of one

And now… we need a new symbol.

We define the

(1)=2

The successor of 1 IS 2.

Thus:

0+(0)=1;1+(0)=(1)=2

Simplify:

0+1=1;1+1=(1);(1)=2.

Further:

0+1=1;1+1=2;2=2.

1 has many different properties; but all of the properties and their resulting definitions have little to do with why 1 + 1 = 2. And that 1 + 1 = 2 is a byproduct of properties inherent to Natural numbers.

Step-by-step explanation:

6 0
3 years ago
Other questions:
  • Ron walks 0.5 mile on a track in 10 minutes. Stevie walks 0.25 mile on the track in 6 minutes find the unit rate for each walker
    12·1 answer
  • I need the answers is really hard i have to solve each system of equation by graphing 5-13
    8·1 answer
  • How do you solve this equation for y 5x-10y=-40
    6·1 answer
  • Please show all of the work ok
    13·1 answer
  • The sum of three numbers is 20. The second number is 4 times the first, and the sum of the first and the third is 8. Find the nu
    13·1 answer
  • Find the area of the trapezoid. If the answer is not an integer, leave it in simplest radical form. The figure is not to scale.
    14·1 answer
  • If anyone has done shop, I really need help with this.
    10·1 answer
  • Which of the following are perfect powers?<br> 1 <br> 24
    5·2 answers
  • Boris filled his gas tank three times last week. Here are the amounts of gas he bought (in gallons).
    14·1 answer
  • Please provide a step by step.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!