<span>The flying bully is a move used in the Superhero Movie "Hancock", it is not a real motion in our universe. However, the direction would be towards the target object and the acceleration would be maximal.</span>
C 82.4 N sorry man if i am wrong but don't even think about reporting my answer
Sure.
Can I use your answer to part-'a' ?
If the angular acceleration is actually 32 rev/min², than
after 1.2 min, it has reached the speed of
(32 rev/min²) x (1.2 min) = 38.4 rev/min .
Check:
If the initial speed is zero and the final speed is 38.4 rpm,
then the average speed during the acceleration period is
(1/2) (0 + 38.4) = 19.2 rpm average
At an average speed of 19.2 rpm for 1.2 min,
it covers
(19.2 rev/min) x (1.2 min) = 23.04 revs .
That's pretty close to the "23" in the question, so I think that
everything here is in order.
Answer:
option C
Explanation:
Given,
Refractive index of medium 1 = n₁
Refractive index of medium 2 = n₂
For total internal reflection to take place light should move from denser medium to the rarer medium.
Here Total internal reflection take place at the boundary of medium 1 and medium 2 so, the refractive index of medium 1 is more than medium 2
n₁ > n₂
The correct answer is option C
I believe so not 100% sure but i am about 50% sure