Answer:
10.52 m
Explanation:
The power radiated by a body is given by
P = σεAT⁴ where ε = emissivity = 0.97, T = temperature = 30 C + 273 = 303 K, A = surface area of human body = 1.8 m², σ = 5.67 × 10⁻⁴ W/m²K⁴
P = σεAT⁴ = 5.67 × 10⁻⁸ W/m²K⁴ × 0.97 × 1.8 m² × (303)⁴ = 834.45 W
This is the power radiated by the human body.
The intensity I = P/A where A = 4πr² where r = distance from human body.
I = P/4πr²
r = (√P/πI)/2
If the python is able to detect an intensity of 0.60 W/m², with a power of 834.45 W emitted by the human body, the maximum distance r, is thus
r = (√P/πI)/2 = (√834.45/0.60π)/2 = 21.04/2 = 10.52 m
So, the maximum distance at which a python could detect your presence is 10.52 m.
Answer:
Current- the flow of free charges, such as electrons and ions
Drift velocity- the average speed at which these charges move
3) Earth is about 150 million km from the Sun, and the apparent brightness of the Sun in our sky is about 1,300 watts per square meter. Determine the apparent brightness we would measure for the Sun if we were located five times Earth's distance from the Sun. Answer: The Sun would appear 1/25 times as bright.
Body Fossils and Trace Fossils.
Hope I helped and good luck with school. Bye!
Answer:
Yeast can use oxygen to release the energy from sugar (like you can) in the process called "respiration". ... So, the more sugar there is, the more active the yeast will be and the faster its growth (up to a certain point - even yeast cannot grow in very strong sugar - such as honey).