Answer:
There are 3 steps of this problem.
Explanation:
Step 1.
Wet steam at 1100 kPa expands at constant enthalpy to 101.33 kPa, where its temperature is 105°C.
Step 2.
Enthalpy of saturated liquid Haq = 781.124 J/g
Enthalpy of saturated vapour Hvap = 2779.7 J/g
Enthalpy of steam at 101.33 kPa and 105°C is H2= 2686.1 J/g
Step 3.
In constant enthalpy process, H1=H2 which means inlet enthalpy is equal to outlet enthalpy
So, H1=H2
H2= (1-x)Haq+XHvap.........1
Putting the values in 1
2686.1(J/g) = {(1-x)x 781.124(J/g)} + {X x 2779.7 (J/g)}
= 781.124 (J/g) - x781.124 (J/g) = x2779.7 (J/g)
1904.976 (J/g) = x1998.576 (J/g)
x = 1904.976 (J/g)/1998.576 (J/g)
x = 0.953
So, the quality of the wet steam is 0.953
Answer: 0.529 atm
Explanation:
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,
where,
= initial pressure of gas = 0.998 atm
= final pressure of gas = ?
= initial volume of gas = 2 L
= final volume of gas = 3.5 L
= initial temperature of gas =
= final temperature of gas =
Now put all the given values in the above equation, we get:
Thus the pressure if it is brought to a higher altitude where it now occupies 3.5 L and is at 12.0 °C is 0.529 atm
Answer:
The answer is Observation.
For you to observe the things around you then you need to use all your sense organs....