Answer:
4.858 g
Explanation:
Start with the formula
density = 
density = 1.98 g/mL
volume = 2.45 mL
mass = ??
rearrange the formula to solve for mass
(density) x (volume) = mass
Add in the substitutes and solve for mass
1.98 g/mL x 2.45 mL = 4.858 g
The traditional method is to heat the compound in an oven, on a hot plate or over a Bunsen burner. Waters of hydration are loosely bound in the compound and can be driven off at temperatures below the melting point of the compound. So the answer is heating.
The balanced equation for the above reaction is as follows;
2C₁₀H₂₂ + 31O₂ ---> 20CO₂ + 22H₂O
stoichiometry of C₁₀H₂₂ to CO₂ is 2:20
this means that for every 2 mol of C₁₀H₂₂ that reacts - 20 mol of CO₂ is formed
therefore when 5.0 mol of C₁₀H₂₂ reacts - 20/2 x 5.0 = 50 mol of CO₂ is formed
50 mol of CO₂ is produced.
Since hydrogen bonding is a stronger intermolecular force than van der Waals forces, more energy is required to separate the molecules of ethanol than the molecules of ethane. Thus ethanol has a higher melting point than ethane.