3x + (x+3) = 19
4x + 3 = 19
4x = 16
x = 4
y= x+3
y= 4+3
y= 7
I'm using PEDMAS.
Multiplication first.
2 • 4 = 8
Subtraction.
20 - 4 = 16
16 + 8 = 24
Please let me know if you spot any errors (especially the fraction operation)
Answer: graph E.
A geometric sequence can be written as:
![a_{n} = a_{1} \cdot r^{(n - 1)}](https://tex.z-dn.net/?f=%20a_%7Bn%7D%20%3D%20a_%7B1%7D%20%5Ccdot%20r%5E%7B%28n%20-%201%29%7D%20%20)
where:
a₁ = first term = 4
r = ratio = 0.5
Substituting the numbers, we have:
![a_{n} = 4 \cdot (\frac{1}{2})^{n-1}](https://tex.z-dn.net/?f=%20a_%7Bn%7D%20%3D%204%20%5Ccdot%20%28%5Cfrac%7B1%7D%7B2%7D%29%5E%7Bn-1%7D%20)
or else
![f(x) = 4 \cdot (\frac{1}{2})^{x - 1}](https://tex.z-dn.net/?f=%20f%28x%29%20%3D%204%20%5Ccdot%20%28%5Cfrac%7B1%7D%7B2%7D%29%5E%7Bx%20-%201%7D%20)
This is an exponential function with base less than 1. Therefore, we can exclude graph C (which depicts a linear function), and graphs A and D (which depict an exponential function with base greater than 1).
In order to choose between graph B and E, let's evaluate the function in two different points:
![f(1) = 4 \cdot (\frac{1}{2})^{1 - 1} = 4](https://tex.z-dn.net/?f=%20f%281%29%20%3D%204%20%5Ccdot%20%28%5Cfrac%7B1%7D%7B2%7D%29%5E%7B1%20-%201%7D%20%3D%204%20)
![f(2) = 4 \cdot (\frac{1}{2})^{2 - 1} = 4 \cdot \frac{1}{2} = 2](https://tex.z-dn.net/?f=%20f%282%29%20%3D%204%20%5Ccdot%20%28%5Cfrac%7B1%7D%7B2%7D%29%5E%7B2%20-%201%7D%20%3D%204%20%5Ccdot%20%5Cfrac%7B1%7D%7B2%7D%20%3D%202%20)
Therefore, we need to look for the graph passing through the points (1, 4) and (2, 2). That is graph E.
Answer:
Use photo math, it will explain all the steps