Rhodium. FYI google it lol would have been faster
We know that the number of moles HCl in 14.3mL of 0.1M HCl can be found by multiplying the volume (in L) by the concentration (in M).
(0.0143L HCl)x(0.1M HCl)=0.00143 moles HCl
Since HCl reacts with KOH in a one to one molar ratio (KOH+HCl⇒H₂O+KCl), the number of moles HCl used to neutralize KOH is the number of moles KOH. Therefore the 25mL solution had to contain 0.00143mol KOH.
To find the mass of KOH in the original mixture you have to divide the number of moles of KOH by the 0.025L to find the molarity of the KOH solution..
(0.00143mol KOH)/(0.025L)=0.0572M KOH
Since the morality does not change when you take some of the solution away, we know that the 250mL solution also had a molarity of 0.0572. That being said you can find the number of moles the mixture had by multiplying 0.0572M KOH by 0.250L to get the number of moles of KOH.
(0.0572M KOH)x(0.250L)=0.0143mol KOH
Now you can find the mass of the KOH by multiplying it by its molar mass of 56.1g/mol.
0.0143molx56.1g/mol=0.802g KOH
Finally you can calulate the percent KOH of the original mixture by dividing the mass of the KOH by 5g.
0.802g/5g=0.1604
the original mixture was 16% KOH
I hope this helps.
In the electrolytic cell, depending on the polarity of the battery, either a more vigorous reaction (though the same as the voltaic cell) would occur, or the reverse would.
Nothing at all happens because pure water cannot conduct electricity
Answer:
See below
Step-by-step explanation:
Ammonium lauryl sulfate has the structural formula CH₃CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂OSO₂O⁻ NH₄⁺.
The long nonpolar hydrocarbon chain and the ionic sulfate end group make it a surfactant.
The ionic end tends to dissolve in water, but the nonpolar chain does not. This makes the compound an excellent <em>foaming agent,</em> so it is used in many shampoos and toothpastes.
The molecules form <em>micelles</em> in water, small spherical shapes with the polar heads outside, facing the water, and the nonpolar tails are inside.
They reduce the surface tension or the water so that, when you brush your teeth or shampoo your hair, the air bubbles are stable and do not break.