Answer:
The pattern is:
Step-by-step explanation:
they are the first letters of each month in the year -
J - January
F- Febuary
M - March
A - April
M - May
Continuing...
J - June
J - July
A - August
S - September
O - October
N - November
D - December
Answer:
Step-by-step explanation:
In each case we find the discriminant b^2 - 4ac.
If the discriminant is negative, we have two unequal, complex roots.
If the discriminant is zero. we have two equal, real roots.
If the discriminant is positive, we have two unequal real roots.
#51: 8v^2 - 12v + 9: the discriminant is (-12)^2 - 4(8)(9) = -144. we have two unequal, complex roots
#52: (-11)^2 - 4(4)(-14) = 121 + 224 = 345. we have two unequal real roots.
#53: (-5)^2 - 4(7)(6) = 25 - 168 (negative). we have two unequal, complex roots.
#54: (4)^2 - 16 = 0. We have two equal, real roots.
Not sure question is complete, assumptions however
Answer and explanation:
Given the above, the function of the population of the ants can be modelled thus:
P(x)= 1600x
Where x is the number of weeks and assuming exponential growth 1600 is constant for each week
Assuming average number of ants in week 1,2,3 and 4 are given by 1545,1520,1620 and 1630 respectively, then we would round these numbers to the nearest tenth to get 1500, 1500, 1600 and 1600 respectively. In this case the function above wouldn't apply, as growth values vary for each week and would have to be added without using the function.
On one hand, the function above could be used as an estimate given that 1600 is the average growth of the ants per week hence a reasonable estimate of total ants in x weeks can be made using the function.
Po
Methane(CH4)
Ethane(C2H6)
Propane(C3H8)
Butane(C4H10)
Pentane(C5H12)
Hexane(C6H14)
Jul 3, 2018
http://www.gcesystems.com › what-...
The answer is A divided 200 by 4 and get 50