Answer:
y= 1/12(x-0)^2+0
this answer works as an upward parabola
Step-by-step explanation:
- The formula for a veritcal parabola is y=1/4p(x-h)^2+k
- (h,k)= coordinates of the vertex of the parabola
- p= absolute value of the distance from the vertex to the focus/directrix
- In this problem, it is given that the vertex is at the origin (0,0) and the focus (the bulb), is 3 centimeters away from the vertex.
- Now, you know the values of the variables. Fill in the values
- FROM THE FORMULA: 1/4p turns into 1/12 since p is 3.
- (x-h)^2+k turns into (x-0)^2+0, since h and k where the values of the vertex which was 0,0
- once all the variables are given values (except x and y) you have made your equation!
- The answer is y=1/12(x-0)^2+0
<u>M</u><u>A</u><u>R</u><u>K</u><u> </u><u>BRAINLIEST</u><u>!</u><u> </u><u>th</u><u>is</u><u> </u><u>took</u><u> </u><u>forever</u><u>,</u><u> </u><u>and</u><u> </u><u>I</u><u> </u><u>know</u><u> </u><u>this</u><u> </u><u>is</u><u> </u><u>the</u><u> </u><u>right</u><u> </u><u>answer</u><u> </u><u>since</u><u> </u><u>I</u><u> </u><u>g</u><u>ot</u><u> </u><u>a</u><u> </u><u>p</u><u>e</u><u>r</u><u>f</u><u>e</u><u>c</u><u>t</u><u> </u><u>grade</u><u> </u><u>when</u><u> </u><u>I</u><u> </u><u>turned</u><u> </u><u>mine</u><u> </u><u>in</u><u>.</u><u> </u>
Answer:
3
Step-by-step explanation:
lim(t→∞) [t ln(1 + 3/t) ]
If we evaluate the limit, we get:
∞ ln(1 + 3/∞)
∞ ln(1 + 0)
∞ 0
This is undetermined. To apply L'Hopital's rule, we need to rewrite this so the limit evaluates to ∞/∞ or 0/0.
lim(t→∞) [t ln(1 + 3/t) ]
lim(t→∞) [ln(1 + 3/t) / (1/t)]
This evaluates to 0/0. We can simplify a little with u substitution:
lim(u→0) [ln(1 + 3u) / u]
Applying L'Hopital's rule:
lim(u→0) [1/(1 + 3u) × 3 / 1]
lim(u→0) [3 / (1 + 3u)]
3 / (1 + 0)
3
Answer:
8, 9
Step-by-step explanation:
1/2x + 2(x + 1) = 22
1/2x + 2x + 2 = 22
1/2x + 2x = 20
5/2x = 20
5x = 40
x = 8
8, 9
4 + 18 = 22
Answer:
I thing mga 15oz po yung sagit
A little tip: you should put the question in next time :)!