Evaluate the following
Lim (xcotx)
x->00
1 answer:
Answer:
1
Step-by-step explanation:
Evaluate the following
Lim (xcotx)
x->0
Note that cotx = cosx/sinx
The expression becomes
Lim (xcotx) = Lim (xcosx/sinx)
x->0 x->0
= 0cos0/sin0
= 0/0 )(ind)
Apply l'hospital rule
= Lim d/dx(xcosx/sinx)
x->0
= lim (-xsinx + cosx)/cosx
x->0
= -0sin0+cos0/cos0
= 0+1/1
= 1/1
= 1
Hence the limit of xcotx as x tends to zero is 1
You might be interested in
Answer:
<u>Given </u>
A
<u>Find the inverse of f(x):</u>
- x = 3 + 6f⁻¹(x)
- 6f⁻¹(x) = x - 3
- f⁻¹(x) = (x - 3) / 6
B
- f · f⁻¹( ∛5/6) =
- f( f⁻¹( ∛5/6)) =
- f((∛5/6 - 3)/6) =
- 3 + 6((∛5/6 - 3)/6) =
- 3 + ∛5/6 - 3 =
- ∛5/6
C
- f · f⁻¹(x) =
- f(f⁻¹(x)) =
- f((x - 3)/6) =
- 3 + 6(x - 3)/6 =
- 3 + x - 3 =
- x
Answer:
Внешний радиус
Тогда внутренний радиус
Объем материала равен разности объемов внешнего и внутреннего шаров, то есть
Answer:
Nearest cent- $1.43
Step-by-step explanation:
14.25x0.10=1.425