The initial investment = $250
<span>annual simple interest rate of 3% = 0.03
</span>
Let the number of years = n
the annual increase = 0.03 * 250
At the beginning of year 1 ⇒ n = 1 ⇒⇒⇒ A(1) = 250 + 0 * 250 * 0.03 = 250
At the beginning of year 2 ⇒ n = 2 ⇒⇒⇒ A(2) = 250 + 1 * 250 * 0.03
At the beginning of year 3 ⇒ n = 3 ⇒⇒⇒ A(2) = 250 + 2 * 250 * 0.03
and so on .......
∴ <span>The formula that can be used to find the account’s balance at the beginning of year n is:
</span>
A(n) = 250 + (n-1)(0.03 • 250)
<span>At the beginning of year 14 ⇒ n = 14 ⇒ substitute with n at A(n)</span>
∴ A(14) = 250 + (14-1)(0.03*250) = 347.5
So, the correct option is <span>D.A(n) = 250 + (n – 1)(0.03 • 250); $347.50
</span>
201 - immigrant
221 - indigenous
Add 10 to indigenous and subtract 10 from immigrant.
Answer:
y = 0
Step-by-step explanation:
To find the slope, we have to plug the values into the slope-intercept formula.
y2 - y1 / x2 - x1
0 - 0 / 4 - (-10)
0 / 14
= 0
Answer:
i had it in my head i forgot
Step-by-step explanation:
Answer:
Step-by-step explanation:
so replace all the x's with -12
1-3/4(-12)
1-(-9)=10