36 equally-likely outcome: (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1),(6,2), (6,3), (6,4), (6,5), (6,6)
Solution:
Outcomes with first number being old number and second being even number: (1,2), (1,4), (1,6), (3,2), (3,4), (3,6), (5,2), (5,4), (5,6) = 9 outcomes
P(old,even) = 9/36 =1/4 = 0.25
Step 1:
Enumerate pairs of numbers whose product is 60
(1,60)
(2,30)
(3,20)
(4,15)
(5,12)
(6,10)
(10,6)
...
2. identify the pair whose components have a difference of 11.
(4,15)
3. attach a negative sign to the smaller component so that the sum is +11.
(-4,15)
Answer: the numbers are -4 and 15.
<u>ANSWER: </u>
x-intercepts of 
<u>SOLUTION:</u>
Given,
-- eqn 1
x-intercepts of the function are the points where function touches the x-axis, which means they are zeroes of the function.
Now, let us find the zeroes using quadratic formula for f(x) = 0.

Here, for (1) a = 1, b= 12 and c = 24


Hence the x-intercepts of 