Answer:
48
Step-by-step explanation:
Answer:
The answer is: y = 2/3x - 3
Step-by-step explanation:
Given point: (3, -1)
Given equation: y = 2/3x - 5, which is in the form y = mx + b where m is the slope and b is the y intercept.
Parallel lines have the same slope. Use the point slope form of the equation with the point (3, -1) and substitute:
y - y1 = m(x - x1)
y - (-1) = 2/3(x - 3)
y + 1 = 2/3x - 6/3
y + 1 = 2/3x - 2
y = 2/3x - 3
Proof:
f(3) = 2/3(3) - 3
= 6/3 - 3
= 2 - 3
= -1, giving the point (3, -1)
Hope this helps! Have an Awesome Day!! :-)
Probabilities are used to determine the chances of selecting a kind of donut from the box.
The probability that Warren eats a chocolate donut, and then a custard filled donut is 0.068
The given parameters are:
![\mathbf{Bars = 6}](https://tex.z-dn.net/?f=%5Cmathbf%7BBars%20%3D%206%7D)
![\mathbf{Chocolate = 3}](https://tex.z-dn.net/?f=%5Cmathbf%7BChocolate%20%3D%203%7D)
![\mathbf{Custard= 3}](https://tex.z-dn.net/?f=%5Cmathbf%7BCustard%3D%203%7D)
The total number of donuts in the box is:
![\mathbf{Total= 6 + 3 + 3}](https://tex.z-dn.net/?f=%5Cmathbf%7BTotal%3D%206%20%2B%203%20%2B%203%7D)
![\mathbf{Total= 12}](https://tex.z-dn.net/?f=%5Cmathbf%7BTotal%3D%2012%7D)
The probability of eating a chocolate donut, and then a custard filled donut is calculated using:
![\mathbf{Pr = \frac{Chocolate}{Total}\times \frac{Custard}{Total-1}}](https://tex.z-dn.net/?f=%5Cmathbf%7BPr%20%3D%20%5Cfrac%7BChocolate%7D%7BTotal%7D%5Ctimes%20%5Cfrac%7BCustard%7D%7BTotal-1%7D%7D)
So, we have:
![\mathbf{Pr = \frac{3}{12}\times \frac{3}{12-1}}](https://tex.z-dn.net/?f=%5Cmathbf%7BPr%20%3D%20%5Cfrac%7B3%7D%7B12%7D%5Ctimes%20%5Cfrac%7B3%7D%7B12-1%7D%7D)
Simplify
![\mathbf{Pr = \frac{3}{12}\times \frac{3}{11}}](https://tex.z-dn.net/?f=%5Cmathbf%7BPr%20%3D%20%5Cfrac%7B3%7D%7B12%7D%5Ctimes%20%5Cfrac%7B3%7D%7B11%7D%7D)
Multiply
![\mathbf{Pr = \frac{9}{132}}](https://tex.z-dn.net/?f=%5Cmathbf%7BPr%20%3D%20%5Cfrac%7B9%7D%7B132%7D%7D)
Divide
![\mathbf{Pr = 0.068}](https://tex.z-dn.net/?f=%5Cmathbf%7BPr%20%3D%200.068%7D)
Hence, the probability that Warren eats a chocolate donut, and then a custard filled donut is approximately 0.068
Read more about probabilities at:
brainly.com/question/9000575