Decreases density because gases have less density than liquids
A 14 pin dual-in-line IC package[14 DIL] is an integrated socket which is most popular form of IC package and has a wide range of application in digital electronics.
The 14-pin DIL has two pairs per side and each pair contains seven connecting pins.
The pairs of pins are arranged linearly one after another.The typical dimensions of width is 6.5 mm and the typical dimension of length is 18 mm.
we are asked to calculate the typical distance between two adjacent pins.
The typical distance between two adjacent pins is calculated as-


[ans]
To solve this problem we apply the concepts related to the electric torque generated by the electromagnetic field. Mathematically this Torque can be written under the following relation

Here,
N = Number of Turns
I = Current
A = Area
B = Magnetic Field
The maximum torque will be reached when the angle is 90 degrees, then we will have the following relation,

Magnetic Field is given at function of the number of loops, permeability constant at free space at the perimeter, then



Replacing at the first equation we have,


Answer:
The answer is (Base quantities or fundamental quantities) and (Derived quantities).
Explanation:
hope it helps.
Answer:
(a) 1.47 x 10⁴ V/m
(b) 1.28 x 10⁻⁷C/m²
(c) 3.9 x 10⁻¹²F
(d) 9.75 x 10⁻¹¹C
Explanation:
(a) For a parallel plate capacitor, the electric field E between the plates is given by;
E = V / d -----------(i)
Where;
V = potential difference applied to the plates
d = distance between these plates
From the question;
V = 25.0V
d = 1.70mm = 0.0017m
Substitute these values into equation (i) as follows;
E = 25.0 / 0.0017
E = 1.47 x 10⁴ V/m
(c) The capacitance of the capacitor is given by
C = Aε₀ / d
Where
C = capacitance
A = Area of the plates = 7.60cm² = 0.00076m²
ε₀ = permittivity of free space = 8.85 x 10⁻¹²F/m
d = 1.70mm = 0.0017m
C = 0.00076 x 8.85 x 10⁻¹² / 0.0017
C = 3.9 x 10⁻¹²F
(d) The charge, Q, on each plate can be found as follows;
Q = C V
Q = 3.9 x 10⁻¹² x 25.0
Q = 9.75 x 10⁻¹¹C
Now since we have found other quantities, it is way easier to find the surface charge density.
(b) The surface charge density, σ, is the ratio of the charge Q on each plate to the area A of the plates. i.e
σ = Q / A
σ = 9.75 x 10⁻¹¹ / 0.00076
σ = 1.28 x 10⁻⁷C/m²