Answer:
6.15 s
Explanation:
The period of a simple pendulum is given by the equation

where
L is the length of the pendulum
g is the acceleration of gravity
For the pendulum in this problem,
L = 1.5 m (length)
(acceleration due to gravity on Earth)
Therefore, its period is

And therefore, the time taken for the pendulum to complete 2.5 oscillations is equal to 2.5 times the period:

If the light of wavelength 700 nm strikes such a photocathode the maximum kinetic energy, in eV, of the emitted electrons is 0.558 eV.
so - $KE_{max} = hc/lembda} work
threshold when KE = 0
hc/lambda = work = 1240/900=1.38 eV
b) Kemax = hc/lambda - work = 1240/640 -1.38=0.558 eV
What is photocathode?
- A photocathode electrolyte interface can be used in a photoelectrolysis cell as the primary light-harvesting junction (in conjunction with an appropriate electrochemical anode) or as an optically complementary photoactive half-cell in a tandem photoelectrode photoelectrolysis cell (Hamnett, 1982; Kocha et al, 1994).
- In the case of the former, the electrode should ideally harvest photon energy across the majority of the solar spectrum in order to achieve the highest energy conversion efficiency possible.
- In the latter case, however, the photocathode may only be active in a specific band of the solar spectrum in order to generate a cathodic photocurrent sufficient to match the current generated in the photoanodic half-cell.
To learn more about Photocathode from the given link:
brainly.com/question/9861585
#SPJ4
Answer:
The answer is CD, just had the same question myself.
When capacitors are in PARALLEL, they add up. (like resistors in series)
If you connect these four capacitors in parallel, the combination behaves like a single capacitor of (4 x 2.5) = 10 mF.
That's the greatest capacitance you can make with these four pieces.