Answer:
C) equal to zero
Explanation:
Electric potential is calculated by multiplying constant and charge, then dividing it by distance. The location that we want to measure is equidistant from two particles, mean that the distance from both particles is the same(r2=r1). The charges of the particle have equal strength of magnitude but the opposite sign(q2=-q1). The resultant will be:V = kq/r
ΔV= V1 + V2= kq1/r1 + kq2/r2
ΔV= V1 + V2= kq1/r1 + k(-q1)/(r)1
ΔV= kq1/r1 - kq1/r1
ΔV=0
The electric potential equal to zero
Answer:
The dimension is 
Explanation:
From the question we are told that

Here ![[J] = \frac{1}{L^2 T}](https://tex.z-dn.net/?f=%5BJ%5D%20%3D%20%5Cfrac%7B1%7D%7BL%5E2%20T%7D)
![[n] =\frac{1}{L^3}](https://tex.z-dn.net/?f=%5Bn%5D%20%3D%5Cfrac%7B1%7D%7BL%5E3%7D)
![[x] = L](https://tex.z-dn.net/?f=%5Bx%5D%20%3D%20L)
So
![\frac{1}{L^2 T} = -D \frac{d(\frac{1}{L^3})}{d[L]}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7BL%5E2%20T%7D%20%3D%20%20-D%20%5Cfrac%7Bd%28%5Cfrac%7B1%7D%7BL%5E3%7D%29%7D%7Bd%5BL%5D%7D)
Given that the dimension represent the unites of n and x then the differential will not effect on them
So
=> 
=> 
The force of friction is zero.
Using F = m a = the force needed is 6 N which means no friction can be acting.
Formula: s = d/t
s = speed
d = distance
t = time
Solve using the values we are given.
s = 300/40
s = 7.5m/s
Best of Luck!
Explanation:
hi do u mind helping me with something lmak