301
We could start by finding the lowest common multiple of 2, 3, 4, 5, and 6, which is 60. Then, we can consider the next few multiples: 120, 180, 240, 300...
However, because we need a remainder of 1 when our number is divided by each of these numbers (2,3,4,5,6), we want to go one above each of these multiples. So we're talking about 61, 121, 181, 241, 301... Those are the numbers that will satisfy the "remainder of 1" part of the question.
Now, we need to find out which one satisfies the other part of the question, which just requires dividing each of these numbers by 7 to see which is divisible by 7 (in other words, which one gives us a remainder of zero when we divide by 7).
301 does it. 301/7 = 43. So 301 is a multiple of 7 and therefore will yield no remainder when divided by 7.
Hope this all makes sense.
Answer:
The number of possible choices of my team and the opponents team is

Step-by-step explanation:
selecting the first team from n people we have
possibility and choosing second team from the rest of n-1 people we have 
As { A, B} = {B , A}
Therefore, the total possibility is 
Since our choices are allowed to overlap, the second team is 
Possibility of choosing both teams will be
![\frac{n(n-1)}{2} * \frac{n(n-1)}{2} \\\\= [\frac{n(n-1)}{2}] ^{2}](https://tex.z-dn.net/?f=%5Cfrac%7Bn%28n-1%29%7D%7B2%7D%20%20%2A%20%20%5Cfrac%7Bn%28n-1%29%7D%7B2%7D%20%20%5C%5C%5C%5C%3D%20%5B%5Cfrac%7Bn%28n-1%29%7D%7B2%7D%5D%20%5E%7B2%7D)
We now have the formula
1³ + 2³ + ........... + n³ =![[\frac{n(n+1)}{2}] ^{2}](https://tex.z-dn.net/?f=%5B%5Cfrac%7Bn%28n%2B1%29%7D%7B2%7D%5D%20%5E%7B2%7D)
1³ + 2³ + ............ + (n-1)³ = ![[x^{2} \frac{n(n-1)}{2}] ^{2}](https://tex.z-dn.net/?f=%5Bx%5E%7B2%7D%20%5Cfrac%7Bn%28n-1%29%7D%7B2%7D%5D%20%5E%7B2%7D)
=![\left[\begin{array}{ccc}n-1\\E\\i=1\end{array}\right] = [\frac{n(n-1)}{2}]^{3}](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dn-1%5C%5CE%5C%5Ci%3D1%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%20%5B%5Cfrac%7Bn%28n-1%29%7D%7B2%7D%5D%5E%7B3%7D)
Answer:
? = 7.
Step-by-step explanation:
The two triangles are similar because of the AA Theorem.
The larger triangle's side that is equal to 9 + 3 corresponds to the smaller triangle's side length of 9, while the larger triangle's 21 + ? side corresponds to the smaller triangle's 21 side. Now, we can set up a proportion!




? + 21 = 7 * 4
? + 21 = 28
? = 28 - 21
? = 7
Hope this helps!
Answer:
Step-by-step explanation: