<h3>
Answer: 226 degrees</h3>
=====================================================
Explanation:
Notice the tickmarks on the segments in the diagram. This tells us that chords DC and CB are the same distance from the center. It furthermore means that DC and CB are the same length, and arcs DC and CB are the same measure
arc DC = arc CB
12x+7 = 18x-23
12x-18x = -23-7
-6x = -30
x = -30/(-6)
x = 5
---------------------
Use this x value to find the measure of arcs DC and CB
- arc DC = 12x+7 = 12*5+7 = 67
- arc CB = 18x-23 = 18*5-23 = 67
We get the same measure for each, which helps confirm we have the correct x value.
The two arcs in question add to 67+67 = 134 degrees. This is the measure of arc DCB. Subtract this from 360 to get the answer
arc DAB = 360-(arc DCB) = 360-134 = 226 degrees
I'm using the idea that (arc DCB) + (arc DAB) = 360 since the two arcs form a full circle.
Answer:
y=x-4
Step-by-step explanation:
The slope is given by
m = (y2-y1)/(x2-x1)
m = (1--9)/(5--5)
m = (1+9)/(5+5)
= 10/10
= 1
The slope is 1
We have the slope and a point,so we can use point slope form
y-y1 = m(x-x1)
y-1 = 1(x-5)
y-1 = x-5
Add 1 to each side
y-1+1 = x-5+1
y=x-4
This is slope intercept form (y= mx+b)
El cable experimenta un esfuerzo axial de 79577.472 pascales por el peso de la caja.
<h3>¿Cómo calcular el esfuerzo aplicado sobre el cable?</h3>
La caja tiene masa y está sometida a un campo gravitacional, por tanto, tiene un peso (W), en newtons. Por el principio de acción y reacción (tercera ley de Newton), encontramos que el cable es tensionado debido a ese peso y su área transversal experimenta un esfuerzo axial (σ), en pascales.
Asumiendo una distribución uniforme de la fuerza sobre toda la superficie transversal de la cuerda, tenemos que el esfuerzo axial se calcula mediante la siguiente expresión:
σ = W / (π · D² / 4)
Donde:
- W - Peso de la caja, en newtons.
- D - Diámetro del área transversal de la caja, en metros.
Si sabemos que W = 25 N y D = 0.02 m, entonces el esfuerzo axial aplicado a la cuerda es:
σ = 25 N / [π · (0.02 m)² / 4]
σ ≈ 79577.472 Pa
<h3>Observación</h3>
La falta de problemas verificados en español sobre esfuerzos axiales obliga a buscar uno equivalente en inglés.
Para aprender más sobre esfuerzos axiales: brainly.com/question/13683145
#SPJ1
The area of a square is
s • s
We can also write this as
s^2
So, for any side length “s”, we can make a function, A(s), such that
A(s) = s^2
Now that we have a quadratic equation for the area of a square, let’s go ahead and solve for the side lengths of a square with a given area. In this case, 225 in^2
225 = s^2
Therefore,
s = sqrt(225)
s = 15
So, the dimensions are 15 x 15 in
The sum of the first n natural numbers and 0=
n*(n+1)/2