Answer:
Sry i am unable to see the attached picture but i hope this helps
Explanation:
There are a couple of ways to prepare a buffer solution of a specific pH. In the first method, prepare a solution with an acid and its conjugate base by dissolving the acid form of the buffer in about 60% of the volume of water required to obtain the final solution volume
Answer:
because the amount of pigments change as thee leaves prepare to fall from the trees
Answer:

Explanation:
1. Calculate the initial moles of acid and base

2. Calculate the moles remaining after the reaction
OH⁻ + H₃O⁺ ⟶ 2H₂O
I/mol: 0.0053 0.005 00
C/mol: -0.00500 -0.005 00
E/mol: 0.0003 0
We have an excess of 0.0003 mol of base.
3. Calculate the concentration of OH⁻
Total volume = 53 mL + 25.0 mL = 78 mL = 0.078 L
![\text{[OH}^{-}] = \dfrac{\text{0.0003 mol}}{\text{0.078 L}} = \textbf{0.0038 mol/L}\\\\\text{The final concentration of OH$^{-}$ is $\large \boxed{\textbf{0.0038 mol/L}}$}](https://tex.z-dn.net/?f=%5Ctext%7B%5BOH%7D%5E%7B-%7D%5D%20%3D%20%5Cdfrac%7B%5Ctext%7B0.0003%20mol%7D%7D%7B%5Ctext%7B0.078%20L%7D%7D%20%3D%20%5Ctextbf%7B0.0038%20mol%2FL%7D%5C%5C%5C%5C%5Ctext%7BThe%20final%20concentration%20of%20OH%24%5E%7B-%7D%24%20is%20%24%5Clarge%20%5Cboxed%7B%5Ctextbf%7B0.0038%20mol%2FL%7D%7D%24%7D)
<h3>Answer:</h3>
Oxidation number refers to a number given to an atom which shows the number of number of electrons lost (or gained, if the number is negative), by an atom of that element in the compound.
Hence oxidation number of following atoms in given reaction are:
In NaOH:
Na = +1
O = -2
H = +1
In H2:
H = 0
Answer:
Add copper (II) oxide (insoluble base), a little at a time to the warm dilute sulfuric acid and stir until the copper (II) oxide is in excess (stops disappearing) Filter the mixture into an evaporating basin to remove the excess copper (II) oxide. Leave the filtrate in a warm place to dry and crystallize.