Answer:
The pressure of the gas at 23 C is 179.92 kPa.
Explanation:
Gay-Lussac's law indicates that, as long as the volume of the container containing the gas is constant, as the temperature increases, the gas molecules move faster. Then the number of collisions with the walls increases, that is, the pressure increases. That is, the pressure of the gas is directly proportional to its temperature.
In short, when there is a constant volume, as the temperature increases, the pressure of the gas increases. And when the temperature is decreased, the pressure of the gas decreases.
Gay-Lussac's law can be expressed mathematically as follows:

Studying two states, one initial 1 and the other final 2, it is satisfied:

In this case:
- P1= 310 kPa
- T1= 237 C= 510 K (being 0 C= 273 K)
- P2= ?
- T2= 23 C= 296 K
Replacing:

Solving:

P2= 179.92 kPa
<u><em>The pressure of the gas at 23 C is 179.92 kPa.</em></u>
Notice that each reactant is made up of two elements. To predict the products, all you have to do is interchange the combination of the two reactants while taking note that metal comes first, followed by nonmetals. With that being said, the reaction would be:
CaC₂ + 2 H₂O --> C₂H₂ + Ca(OH)₂
<em>So, the answer is C₂H₂.</em>
<h3>
Answer:</h3>
7.182K
<h3>
Explanation:</h3>
From the question we are given;
- Initial temperature, T1 = 275 K
- Final temperature, T2 = 395 K
- Initial volume, V1 = 5 L
We are required to calculate the final volume, V2
- Charles's law is the law that relates the volume of a gas and its temperature.
- It states that the volume of a fixed mass of a gas and its absolute temperature are directly proportional at a constant pressure.
- Therefore;

To calculate, V2 we rearrange the formula;



Therefore, the ending volume will be 7.182K
Answer:
A mole is the amount of pure substance containing the same number of chemical units as there are atoms in exactly
12 grams of carbon-12 (i.e., 6.023 X 1023).
Explanation:
The activation energy in the
diagram is 43.8 kcal/ mole, letter C. You have to note that activation energy
is the energy needed for the reaction to occur and produce products. Therefore,
the spike after H2 and I2 is reacted is the activation energy of the reaction.