Answer:
Option 4. There's no hydrogen bonding between HBr molecules at all.
Explanation:
<h3>SiH₄</h3>
SiH₄ molecules are tetrahedral and symmetric. Dipoles due to the polar Si-H bonds balance each other. SiH₄ molecules are nonpolar. Only instantaneous dipoles are possible between those molecules.
<h3>C₆H₆ Benzene</h3>
Similar to SiH₄, benzene is symmetric. Dipoles due to the weakly polar C-H bonds balance each other. Benzene molecules are nonpolar. Only instantaneous dipoles are possible between those molecules.
<h3>NH₃</h3>
There are two conditions for hydrogen bonding to take place:
- H atoms are directly bonded to a highly electronegative element: Nitrogen, Oxygen, or Fluorine.
- There is at least one lone pair of electrons nearby.
Consider the Lewis structure of NH₃. There are three H atoms in each NH₃ molecule. Each of the three H atoms is bonded directly to the N atom with a highly polar N-H bond. Also, there is a lone pair of electrons on the N atom. Hydrogen bonding will take place between NH₃ molecules.
NH₃ is a relatively small molecule. As a result, hydrogen bonding will be the dominant type of intermolecular force between NH₃ molecules.
<h3>HBr</h3>
There are three lone pairs on the Br atom in each HBr molecule. However, no H atom is connected to any one of the three highly electronegative elements: N, O, or F. The Br atom isn't electronegative enough for the H atom to form hydrogen bonding. HBr molecules are polar. As a result, the dominant type of intermolecular forces between HBr molecules will be dipole-dipole interactions (A.k.a. permanent dipole.)
<h3>CaO</h3>
Calcium is a group 2 metal. Oxygen is one of the three most electronegative nonmetal. (Again, the most electronegative elements are: Nitrogen, Oxygen, and Fluorine.) As a main group metal, Ca atoms tend to lose electrons and form positive ions. Oxygen will gain those electrons to form a negative ion. As a result, CaO will be an ionic compound full of Ca²⁺ and O²⁻ ions. Forces between ions with opposite charges are called ionic bonds.
Answer:
The saline water should be from 1000 ppm to 3000 ppm while fresh water is less than 1000 ppm
<span>Acetic acid is under the family
of carboxylic acids which has a carboxyl group –COOH bond attached to the alkyl
group. Alkyl group can be methyl (CH3-), ethyl (CH3CH2-) and so on. The term
acetic also means methyl. So combining the two gives CH3COOH or HCH3CO2. The H
before the C in <u>H</u>CH3CO2 means that it is the H attached to the O in the carboxyl
group –COOH. You cannot write it as C2H4O2 because it would represent a
different compound.</span>
Answer: all other conditions equal, the rate evaporation of a contained liquid will be slower than the rate of evaporation of an uncontained liquid.
Justification:
1) The rate of evaporation increases as the surface area of the liquid (relative to the whole content) increases. This is, the greater the surface is the faster the evaporation.
2) That is so because the higher the surface of the liquid the more the number of particles in the liquid that are in contact with the surrounding air and so the more the particles will escape from the liquid to the air (which is what evaporation is).
3) A liquid contained will take the form of the container, so part of the liquid wil remain below the surface, while an uncontained liquid will spread all over the surface and so pratically all the liquid is in contact witht the air surrounding it.
Answer:Name your table. Write a title at the top of your paper. ...
Figure out how many columns and rows you need.
Draw the table. Using a ruler, draw a large box. ...
Label all your columns. ...
Record the data from your experiment or research in the appropriate columns. ...
Check your table.
Explanation: