Answer:
q = -6464.9 kJ
Explanation:
We are given that the heat of combustion is ∆H° = −394 kJ per mol of carbon.Therefore what we need to do is calculate how many moles of C are in the lump of coal by finding its mass since the density is given.
vol = 5.6 cm x 5.1 cm x 4.6 cm = 131.38 cm³
m = d x v = 1.5 g/cm³ x 131.38 cm³ = 197.06 g
mol C = m/MW = 197.06 g/ 12.01g/mol = 16.41 mol
q = −394 kJ /mol C x 16.41 mol C = -6464.9 kJ
Answer:
No, you cannot
Explanation:
One of the major properties a cancer drug must have is that, it must be highly specific. If a drug that poisons enzymes of anaerobic metabolism is used on a cancer patient, it should be noted that the drug will not only kill cancer cells but will also kill under cells that make use of anaerobic metabolism. Hence, this drug is not a specific to cancer cells but will also affect other normal cells in the patient's body. Thus, it would be wrong to use such drugs to treat cancer.
The answer is B "the reaction is exothermic", and C "the reactants lost internal energy."
Answer:
We need 4.28 grams of sodium formate
Explanation:
<u>Step 1:</u> Data given
MW of sodium formate = 68.01 g/mol
Volume of 0.42 mol/L formic acid = 150 mL = 0.150 L
pH = 3.74
Ka = 0.00018
<u>Step 2:</u> Calculate [base)
3.74 = -log(0.00018) + log [base]/[acid]
0 = log [base]/[acid]
0 = log [base] / 0.42
10^0 = 1 = [base]/0.42 M
[base] = 0.42 M
<u>Step 3:</u> Calculate moles of sodium formate:
Moles sodium formate = molarity * volume
Moles of sodium formate = 0.42 M * 0.150 L = 0.063 moles
<u>Step 4:</u> Calculate mass of sodium formate:
Mass sodium formate = moles sodium formate * Molar mass sodium formate
Mass sodium formate = 0.063 mol * 68.01 g/mol
Mass sodium formate = 4.28 grams
We need 4.28 grams of sodium formate