Explanation:
so for this u have to use this equation where
Moles = number of particle/6.02×10^23
= 3.045 × 10^24/6.02×10^23
= 5.0581
write it to 3 S.F so 5.06 moles
Answer: This is a list of the seven diatomic elements. The seven diatomic elements are:
Hydrogen (H2)
Nitrogen (N2)
Oxygen (O2)
Fluorine (F2)
Chlorine (Cl2)
Iodine (I2)
Bromine (Br2)
All of these elements are nonmetals, since the halogens are a special type of nonmetallic element. Bromine is a liquid at room temperature, while the other elements all gases under ordinary conditions. As the temperature is lowered or pressure is increased, the other elements become diatomic liquids.
Astatine (atomic number 85, symbol At) and tennessine (atomic number 117, symbol Ts) are also in the halogen group and may form diatomic molecules. However, some scientists predict tennessine may behave more like a noble gas.
While only these seven elements routinely form diatomic molecules, other elements can form them. However, diatomic molecules formed by other elements are not very stable, so their bonds are easily broken.
How to Remember the Diatomic Elements
The elements ending with "-gen" including halogens form diatomic molecules. An easy-to-remember mnemonic for the diatomic elements is: Have No Fear Of Ice Cold Beer
Explanation:
SORRY if you don't understand!
Answer: 1.09 g
Explanation:
If we use the approximation that 1 mole is 22.4 L, then setting up a proportion,
- 1/22.4 = x/0.345 (x is the number of moles in the sample)
- x = 0.0154 mol
Since the mass of a mole of chlroine is about 70.9 g/mol, (0.0154)(70.9) = 1.09 g (to 3 s.f.)
If a negatively charged ion is more concentrated inside the cell, the forces required to balance the chemical gradient would be directed <u>Inward</u>. Thus, the equilibrium potential for this ion would be <u>Positively</u> charged.
<u>Explanation:</u>
The measurement of potential of resting membrane is distributed unequally in the form of ions or the charged particles, which are consist between both the cell's internal structure and external structure, by the membrane's changing permeability to various ion forms.
Like in most of the neurons the potassium and organic ions which are common in amino acids are present more in internal portion of cell than its outer portion. By comparison sodium and chloride ions are normally present in the cell externally at higher concentrations. This implies there are balanced gradients of concentration around the membrane for all the most concentrated forms of ions.