Answer:
(1) the surface area of the solute,
(2) the temperature of the solvent,
(3) the amount of agitation that occurs when the solute and the solvent are mixed.
Explanation:
Answer:
ΔU = 25.8 J
Explanation:
The gas absorbs 33.3 J of heat, that is, Q = 33.3 J.
The work (W) of expansion can be calculated using the following expression:
W = -P. ΔV
where,
P is the external pressure
ΔV is the change in volume
W = -1.45 × 10⁴ N . m⁻² × (8.40 × 10⁻⁴ m³ - 3.24 × 10⁻⁴ m³) = -7.48 J
The change in the internal energy (ΔU) is:
ΔU = Q + W
ΔU = 33.3 J + (-7.48 J) = 25.8 J
Answer:
Explanation:
<u>1) Data:</u>
a) m = 18 kg
b) T₁ = 285 K
c) T₂ = 318 K
d) Q = 267.3 kJ
e) S = ?
<u>2) Principles and equations</u>
The specific heat of a substance is the amount of heat energy absorbed to increase the temperature of certain amount (gram, kg, or moles, depending on the definition or units) of the substance in 1 ° C or 1 K.
The mathematical relation between the specific heat and the heat energy absorbed is:
Where,
- Q is the heat absorbed,
- S is the specific heat, and
- ΔT is the temperature increase (T₂ - T₁)
<u>3) Solution:</u>
<u>a) Substitute the data into the equation:</u>
- 267.3 kJ = 18 kg × S × (318 K - 285 K)
<u>b) Solve for S and compute:</u>
- S = 267.3 kJ / (18 kg × 33 K) = 0.45 kJ / (Kg . K)
The options have not units, but I notice that the first answer is 1,000 times the answer I obtained, so I will make a conversion of units.
<u>c) Convert to J /( kg . k):</u>
- 0.45 kJ / (Kg . K) × 1,000 J / kJ = 450 J / (kg . K)
Now we can see that the option A is is the answer, assuming the units.
The correct answer is slow
Answer:
a) the minimun of acetic anhydride required for the reaction is 2.175 g (CH3CO)2O
b) V acetic anhydride = 2.010 mL
Explanation:
C6H4OHCOOH + (CH3CO)2O ↔ C9H8O4 + C2H4O2
⇒ mol salicylic acid = 2.94 g C6H4OHCOOH * ( mol C6H4OHCOOH / 138.121 g ) = 0.0213 mol C6H4OHCOOH
⇒ mol acetic anhydride = 0.0213 mol C6H4OHCOOH * ( mol (CH3CO)2O / mol C6H4OHCOOH ) = 0.0213 mol (CHECO)2O
⇒ g acetic anhydride = 0.0213 mol * ( 102.1 g/mol ) = 2.175 g CH3CO)2O
b) V = 2.175 g (CH3CO)2 * ( mL / 1.082 g ) = 2.010 mL (CH3CO)2O