Its hard to show you the steps just gotta payin attention to your teacher
anyway i tried my best to show you the steps
tbh if you needed explanation you should more points
We need the rates please attach a picture
Answer:
P[X=3,Y=3] = 0.0416
Step-by-step explanation:
Solution:
- X is the RV denoting the no. of customers in line.
- Y is the sum of Customers C.
- Where no. of Customers C's to be summed is equal to the X value.
- Since both events are independent we have:
P[X=3,Y=3] = P[X=3]*P[Y=3/X=3]
P[X=3].P[Y=3/X=3] = P[X=3]*P[C1+C2+C3=3/X=3]
P[X=3]*P[C1+C2+C3=3/X=3] = P[X=3]*P[C1=1,C2=1,C3=1]
P[X=3]*P[C1=1,C2=1,C3=1] = P[X=3]*(P[C=1]^3)
- Thus, we have:
P[X=3,Y=3] = P[X=3]*(P[C=1]^3) = 0.25*(0.55)^3
P[X=3,Y=3] = 0.0416
Answer:
Only d) is false.
Step-by-step explanation:
Let be the characteristic polynomial of B.
a) We use the rank-nullity theorem. First, note that 0 is an eigenvalue of algebraic multiplicity 1. The null space of B is equal to the eigenspace generated by 0. The dimension of this space is the geometric multiplicity of 0, which can't exceed the algebraic multiplicity. Then Nul(B)≤1. It can't happen that Nul(B)=0, because eigenspaces have positive dimension, therfore Nul(B)=1 and by the rank-nullity theorem, rank(B)=7-nul(B)=6 (B has size 7, see part e)
b) Remember that . 0 is a root of p, so we have that .
c) The matrix T must be a nxn matrix so that the product BTB is well defined. Therefore det(T) is defined and by part c) we have that det(BTB)=det(B)det(T)det(B)=0.
d) det(B)=0 by part c) so B is not invertible.
e) The degree of the characteristic polynomial p is equal to the size of the matrix B. Summing the multiplicities of each root, p has degree 7, therefore the size of B is n=7.