Answer:
a. Amyloid fibrils have a high amount of β-sheet structure.
c. Because most newly synthesized proteins fold correctly, the accumulation of misfolded proteins (or fragments) tends to occur slowly, thus explaining the slow onset of disease.
e. Proteins that form amyloid fibrils are normally soluble.
Explanation:
Amyloids can be defined as fibrillar protein aggregates composed of a β-sheet secondary structure. In general, the amyloid fibrils are composed by soluble proteins that are assembled to form insoluble resistant to degradation fibers. In humans, defective amyloid proteins produced by misfolding are known to produce diseases (amyloidosis) capable of altering the function of tissues and organs. Systemic forms of amyloidosis are common in neurodegenerative disorders.
B.
When fossil fuels are burned carbon dioxide is released in to the atmosphere
hope this helps
The number of phenotypes produced for a given trait depends on how many genes control the trait. Anyhow, The distribution of phenotypes for a typical polygenic trait can often be expressed as a bell-shaped curve.
Many traits are controlled by two or more genes and are, therefore, called polygenic traits<span>. Each gene of a polygenic trait often has two or more alleles. As a result, one polygenic trait can have many possible genotypes and phenotypes.</span>
This question is incomplete because the options are not given; here is the complete question:
Which one of the following processes does not occur to excess neurotransmitters in the synapse?
A. Break down or digested into inactive fragments.
B. Collection by scavenger vesicles left over from the neurotransmitter release.
C. Drifting away from the synapse via diffusion.
D. Reuptake within the pre-synaptic neuron.
The answer to this question is B. Collection by scavenger vesicles left over from the neurotransmitter release.
Explanation:
The word synapse refers to the neurological structure that allows the transmission of signals or information between neurons. This process occurs through neurotransmitters, which are the molecules or substances with the messages.
Moreover, in this process, there can be in some cases excess. In this situation, the body reacts to this excess by degrading or breaking down the extra neurotransmitters, eliminating it through diffusion, or even reabsorbing it (reuptake). In this context, all are processes that occur due to excess neurotransmitters except collection by scavenger vesicles because in most cases neurotransmitters are simply absorbed or eliminated but there are not specialized scavenger vesicles that collect them.
The tadpole would die out. Which would cause the sudden decrease I duck and frog.