Answer:
I = 91.125
Step-by-step explanation:
Given that:
where E is bounded by the cylinder
and the planes x = 0 , y = 9x and z = 0 in the first octant.
The initial activity to carry out is to determine the limits of the region
since curve z = 0 and
∴ 

Thus, z lies between 0 to 
GIven curve x = 0 and y = 9x

As such,x lies between 0 to 
Given curve x = 0 ,
and z = 0,
y = 0 and

∴ y lies between 0 and 9
Then 











I = 91.125
Answer:

Step-by-step explanation:
![\sf{ [ (4 \frac{1}{6} + 2 \frac{1}{3} ) \div 4 \frac{1}{3}] - 1\frac{1}{2} }](https://tex.z-dn.net/?f=%20%5Csf%7B%20%5B%20%284%20%5Cfrac%7B1%7D%7B6%7D%20%20%2B%202%20%5Cfrac%7B1%7D%7B3%7D%20%29%20%20%5Cdiv%204%20%5Cfrac%7B1%7D%7B3%7D%5D%20-%20%201%5Cfrac%7B1%7D%7B2%7D%20%7D)
Convert the mixed numbers into improper fraction
![\longrightarrow{ \sf{ [ ( \frac{25}{6} + \frac{7}{3} ) \div \frac{13}{3}] - \frac{3}{2}}}](https://tex.z-dn.net/?f=%20%5Clongrightarrow%7B%20%5Csf%7B%20%5B%20%28%20%5Cfrac%7B25%7D%7B6%7D%20%20%2B%20%20%5Cfrac%7B7%7D%7B3%7D%20%29%20%5Cdiv%20%20%5Cfrac%7B13%7D%7B3%7D%5D%20-%20%20%5Cfrac%7B3%7D%7B2%7D%7D%7D%20)
Add the fractions : 25 / 6 and 7 / 3
While performing addition or subtraction of unlike fractions, you have to express the given fractions into equivalent fractions of common denominator and add or subtract as we do with like fraction.
To do so, first take the L.C.M of 6 and 3 which results to 6
![\longrightarrow\sf{ [( \frac{25 + 7 \times 2}{6} ) \div \frac{13}{3} ] - \frac{3}{2}}](https://tex.z-dn.net/?f=%20%20%5Clongrightarrow%5Csf%7B%20%5B%28%20%5Cfrac%7B25%20%2B%207%20%5Ctimes%202%7D%7B6%7D%20%29%20%5Cdiv%20%20%5Cfrac%7B13%7D%7B3%7D%20%5D%20-%20%20%5Cfrac%7B3%7D%7B2%7D%7D%20)
![\longrightarrow{ \sf{ [( \frac{25 + 14}{6} ) \div \frac{13}{3} ] - \frac{3}{2} }}](https://tex.z-dn.net/?f=%20%5Clongrightarrow%7B%20%5Csf%7B%20%5B%28%20%5Cfrac%7B25%20%2B%2014%7D%7B6%7D%20%29%20%20%5Cdiv%20%20%5Cfrac%7B13%7D%7B3%7D%20%20%5D%20-%20%20%5Cfrac%7B3%7D%7B2%7D%20%7D%7D)
![\longrightarrow{ \sf{ [ \frac{39}{6} \div \frac{13}{3}] - \frac{3}{2} }}](https://tex.z-dn.net/?f=%20%5Clongrightarrow%7B%20%5Csf%7B%20%5B%20%5Cfrac%7B39%7D%7B6%7D%20%20%5Cdiv%20%20%5Cfrac%7B13%7D%7B3%7D%5D%20-%20%20%5Cfrac%7B3%7D%7B2%7D%20%7D%7D)
Multiply the dividend by the reciprocal of the divisor.
Reciprocal of any number or fraction can be obtained by interchanging the position of numerator and denominator
![\longrightarrow{ \sf{ [ \frac{39}{6} \times \frac{3}{13} ] - \frac{3}{2}}}](https://tex.z-dn.net/?f=%20%5Clongrightarrow%7B%20%5Csf%7B%20%5B%20%20%5Cfrac%7B39%7D%7B6%7D%20%20%5Ctimes%20%20%5Cfrac%7B3%7D%7B13%7D%20%5D%20-%20%20%5Cfrac%7B3%7D%7B2%7D%7D%7D%20)
To multiply one fraction by another, multiply the numerators for the numerator and multiply the denominators for its denominator and reduce the fraction obtained after multiplication into lowest term
![\longrightarrow{ \sf{ [ \frac{39 \times 3}{6 \times 13} ] - \frac{3}{2}}}](https://tex.z-dn.net/?f=%20%5Clongrightarrow%7B%20%5Csf%7B%20%5B%20%20%5Cfrac%7B39%20%5Ctimes%203%7D%7B6%20%5Ctimes%2013%7D%20%5D%20-%20%20%5Cfrac%7B3%7D%7B2%7D%7D%7D%20)
![\longrightarrow{ \sf{ [ \frac{117}{78} ] - \frac{3}{2} }}](https://tex.z-dn.net/?f=%20%5Clongrightarrow%7B%20%5Csf%7B%20%5B%20%20%5Cfrac%7B117%7D%7B78%7D%20%20%5D%20-%20%20%5Cfrac%7B3%7D%7B2%7D%20%7D%7D)

While performing the addition or subtraction of like fractions , you just have to add or subtract the numerator respectively in which the denominator is retained same

Subtract 3 from 3

Divide 0 by 2

Hope I helped!
Best regards!
I'll do Problem 8 to get you started
a = 4 and c = 7 are the two given sides
Use these values in the pythagorean theorem to find side b

With respect to reference angle A, we have:
- opposite side = a = 4
- adjacent side = b =

- hypotenuse = c = 7
Now let's compute the 6 trig ratios for the angle A.
We'll start with the sine ratio which is opposite over hypotenuse.

Then cosine which is adjacent over hypotenuse

Tangent is the ratio of opposite over adjacent

Rationalizing the denominator may be optional, so I would ask your teacher for clarification.
So far we've taken care of 3 trig functions. The remaining 3 are reciprocals of the ones mentioned so far.
- cosecant, abbreviated as csc, is the reciprocal of sine
- secant, abbreviated as sec, is the reciprocal of cosine
- cotangent, abbreviated as cot, is the reciprocal of tangent
So we'll flip the fraction of each like so:

------------------------------------------------------
Summary:
The missing side is 
The 6 trig functions have these results

Rationalizing the denominator may be optional, but I would ask your teacher to be sure.
If
, then by rationalizing the denominator we can rewrite

Now,

and



Multiply and divide by the product of the denominators.