1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Finger [1]
3 years ago
5

What is the equation of the line that passes through the point (-6,-6)and has a slope of -\frac{1}{3}− ?

Mathematics
1 answer:
Gnesinka [82]3 years ago
3 0

9514 1404 393

Answer:

  y +6 = (-1/3)(x +6)

Step-by-step explanation:

Given a point and a slope, it is appropriate to use the point-slope form to represent the equation:

  y -k = m(x -h) . . . . . line with slope m through point (h, k)

For your point and slope, the equation is ...

  y -(-6) = -1/3(x -(-6))

  y +6 = -1/3(x +6)

__

Of course, this can be rearranged to whatever form you need.

  y = -1/3x -8 . . . . slope-intercept form

  x +3y = -24 . . . . standard form

You might be interested in
What are the amplitude, period, and phase shift of the given function? f(t)=-2/3 cos (3t-3pi)
dybincka [34]

Answer:

amplitude; \frac{2}{3}

Phase shift; \pi units right

Period;\frac{2\pi}{3}

Step-by-step explanation:

The given function is

y=-\frac{2}{3}\cos(3t-3\pi)

This function is of the form;

y=A\sin (Bt+C)

The period is given by:

|A|=|-\frac{2}{3}|= \frac{2}{3}

The period is given by:

T=\frac{2\pi}{|B|}= \frac{2\pi}{|3|}=\frac{2\pi}{3}

The phase shift is given by;

\frac{C}{B}=\frac{-\3pi}{3}=- \pi or \pi units right.

4 0
3 years ago
Shapes that have no right angles also have no perpendicular segments
nignag [31]

Answer:

Correct

Step-by-step explanation:

4 0
2 years ago
Y=-3x + 4<br> y= 3x - 2<br><br> Solve using Elimination Method
vova2212 [387]

Answer:

x=1

y=1

Step-by-step explanation:

-3x+4=3x-2

-3x+3x+4=3x+3x-2

4=6x-2

4+2=6x-2+2

6=6x

x=1

y=3(1)-2

y=1

3 0
3 years ago
For what value of a should you solve the system of elimination?
SIZIF [17.4K]
\begin{bmatrix}3x+5y=10\\ 2x+ay=4\end{bmatrix}

\mathrm{Multiply\:}3x+5y=10\mathrm{\:by\:}2: 6x+10y=20
\mathrm{Multiply\:}2x+ay=4\mathrm{\:by\:}3: 3ay+6x=12

\begin{bmatrix}6x+10y=20\\ 6x+3ay=12\end{bmatrix}

6x + 3ay = 12
-
6x + 10y = 20
/
3a - 10y = -8

\begin{bmatrix}6x+10y=20\\ 3a-10y=-8\end{bmatrix}

3a-10y=-8 \ \textgreater \  \mathrm{Subtract\:}3a\mathrm{\:from\:both\:sides}
3a-10y-3a=-8-3a

\mathrm{Simplify} \ \textgreater \  -10y=-8-3a \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}-10
\frac{-10y}{-10}=-\frac{8}{-10}-\frac{3a}{-10}

Simplify more.

\frac{-10y}{-10} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{-a}{-b}=\frac{a}{b} \ \textgreater \  \frac{10y}{10}

\mathrm{Divide\:the\:numbers:}\:\frac{10}{10}=1 \ \textgreater \  y

-\frac{8}{-10}-\frac{3a}{-10} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{-8-3a}{-10}

\mathrm{Apply\:the\:fraction\:rule}: \frac{a}{-b}=-\frac{a}{b} \ \textgreater \  -\frac{-3a-8}{10} \ \textgreater \  y=-\frac{-8-3a}{10}

\mathrm{For\:}6x+10y=20\mathrm{\:plug\:in\:}\ \:y=\frac{8}{10-3a} \ \textgreater \  6x+10\cdot \frac{8}{10-3a}=20

10\cdot \frac{8}{10-3a} \ \textgreater \  \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} \ \textgreater \  \frac{8\cdot \:10}{10-3a}
\mathrm{Multiply\:the\:numbers:}\:8\cdot \:10=80 \ \textgreater \  \frac{80}{10-3a}

6x+\frac{80}{10-3a}=20 \ \textgreater \  \mathrm{Subtract\:}\frac{80}{10-3a}\mathrm{\:from\:both\:sides}
6x+\frac{80}{10-3a}-\frac{80}{10-3a}=20-\frac{80}{10-3a}

\mathrm{Simplify} \ \textgreater \  6x=20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}6 \ \textgreater \  \frac{6x}{6}=\frac{20}{6}-\frac{\frac{80}{10-3a}}{6}

\frac{6x}{6} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{6}{6}=1 \ \textgreater \  x

\frac{20}{6}-\frac{\frac{80}{10-3a}}{6} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{20-\frac{80}{-3a+10}}{6}

20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Convert\:element\:to\:fraction}: \:20=\frac{20}{1} \ \textgreater \  \frac{20}{1}-\frac{80}{-3a+10}

\mathrm{Find\:the\:least\:common\:denominator\:}1\cdot \left(-3a+10\right)=-3a+10

Adjust\:Fractions\:based\:on\:the\:LCD \ \textgreater \  \frac{20\left(-3a+10\right)}{-3a+10}-\frac{80}{-3a+10}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}: \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}
\frac{20\left(-3a+10\right)-80}{-3a+10} \ \textgreater \  \frac{\frac{20\left(-3a+10\right)-80}{-3a+10}}{6} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{\frac{b}{c}}{a}=\frac{b}{c\:\cdot \:a}

20\left(-3a+10\right)-80 \ \textgreater \  Rewrite \ \textgreater \  20+10-3a-4\cdot \:20

\mathrm{Factor\:out\:common\:term\:}20 \ \textgreater \  20\left(-3a+10-4\right) \ \textgreater \  Factor\;more

10-3a-4 \ \textgreater \  \mathrm{Subtract\:the\:numbers:}\:10-4=6 \ \textgreater \  -3a+6 \ \textgreater \  Rewrite
-3a+2\cdot \:3

\mathrm{Factor\:out\:common\:term\:}3 \ \textgreater \  3\left(-a+2\right) \ \textgreater \  3\cdot \:20\left(-a+2\right) \ \textgreater \  Refine
60\left(-a+2\right)

\frac{60\left(-a+2\right)}{6\left(-3a+10\right)} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{60}{6}=10 \ \textgreater \  \frac{10\left(-a+2\right)}{\left(-3a+10\right)}

\mathrm{Remove\:parentheses}: \left(-a\right)=-a \ \textgreater \   \frac{10\left(-a+2\right)}{-3a+10}

Therefore\;our\;solutions\;are\; y=\frac{8}{10-3a},\:x=\frac{10\left(-a+2\right)}{-3a+10}

Hope this helps!
7 0
3 years ago
Read 2 more answers
Determine the value of −14.1 × (-7.33)
Darya [45]

Answer:

Multiply -14.1 by -7.33.103.353     ?

Step-by-step explanation:

Sorry I'm not very good at math hope this helps..

8 0
2 years ago
Other questions:
  • A shipment to a warehouse consists of 1000 smart phones. The manager chooses a random sample of 50 smart phones and finds that 5
    15·1 answer
  • PLEASE HELP ASAP 25 POINTS
    10·2 answers
  • Writing in math
    6·2 answers
  • A quadrilateral has angles that measure 74°, 93°, and 117°.
    12·1 answer
  • A student heats a crucible and sample of a hydrate as directed in the lab procedure. However, the student removes the crucible f
    13·1 answer
  • I really need help on this plz help me....​
    5·1 answer
  • 8.
    6·1 answer
  • Select the correct answer Which equation matches the function shown in the graph A.y=sin(x+pi) B. y=sin(x+pi/2) C.y=sin(x-pi) D.
    7·1 answer
  • Identify the type of figure
    9·2 answers
  • A bag contains 2 red marbles, 7 blue marbles and 5 green marbles. If two marbles are drawn out of the bag, what is the exact pro
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!