Sarah has 7 beads all together
The cross section of the satellite dish is an illustration of a quadratic function
The quadratic function that models the cross-section is y = 1/6(x^2 - 9)
<h3>How to determie the equation of the cross-section?</h3>
The given parameters are:
Width = 6 feet
Depth = 1.5 feet
Express the width the sum of two equal numbers
Width = 3 + 3
The above means that, the equation of the cross section passes through the x-axis at:
x = -3 and 3
So, we have:
y = a(x - 3) * (x + 3)
Express as the difference of two squares
y = a(x^2 - 9)
The depth is 1.5.
This is represented as: (x,y) =(0,-1.5)
So, we have:
-1.5 = a(0^2 - 9)
Evaluate the exponent
-1.5 = -9a
Divide both sides by -9
a = 1/6
Substitute 1/6 for a in y = a(x^2 - 9)
y = 1/6(x^2 - 9)
Hence, the quadratic function that models the cross-section is y = 1/6(x^2 - 9)
Read more about quadratic functions at:
brainly.com/question/1497716
Answer:
See Explanation
Step-by-step explanation:
Given
Let:
Strawberry
Grape
The given parameter can be represented as:

Required
The question is incomplete as what is required is not stated.
Possible questions could be to determine the number of strawberries given a certain number of grapes, and vice versa
Take for instance
Calculate the number of grapes when there are 20 strawberries
We have:

This becomes

Express as fraction

Make G the subject



<em>i.e. 50 grapes</em>
<em>Apply the same method given a certain number of grapes</em>
2x+4y=0
substitute y with 0
2x+4(0)=0
solve the equation
2x+0=0
2x=0
divide by 2 on both sides
x=0
4x+8y=7
substitute y with 0
4x+8(0)=7
solve the equation
4x+0=7
4x=7
divide by 4 on both sides
x=7/4 or x=1 3/4 or x=1.75
3x-7y=-29
2x+2y=6
solve the bottom equation
3x-7y=-29
x=3-y
substitute for x
3(3-y)-7y=-29
solve the equation
y=19/5
now substitute for y
x=3-
solve for x
x=-4/5
the possible solution of the system is the ordered pair
(x,y)=(
)
If Paul mows the lawn once, he earns 1*25.50. If he mows it twice, he earns 2*25.50, and so on. So, he earns L*25.50. But, he spends 3.50. So the equation is: