Answer:
Phase changes typically occur when the temperature or pressure of a system is altered. When temperature or pressure increases, molecules interact more with each other. When pressure increases or temperature decreases, it's easier for atoms and molecules to settle into a more rigid structure.
Explanation:
Hope it helps UvU
Answer:
A divergent boundary is when the plates move apart from each other. When the plates part, magma from under either plate rises and forms a volcano. A hotspot is the third place a volcano can form. This particular type is the least common.
Explanation:
Answer:
Uracil
Explanation:
The base that will NOT combine with 2-deoxyribose to form a nucleic acid is Uracil.
2-deoxyribose is a pentose sugar found in the DNA (Deoxyribonucleic acid). It is devoid of oxygen in its 2' position. The bases found in DNA are Adenine, Guanine, Cytosine and Thymine. Adenine, Guanine, and Cytosine are also found in RNA (Ribonucleic acid). Thymine is not present in RNA, it is only found in DNA. The base found in RNA is Uracil which in turn is not present in DNA. The five carbon sugar present in RNA is ribose which combines with Uracil.
Answer:
40.94 g
Explanation:
Given data:
Mass of NO₂ = ?
Volume = 20.0 L
Pressure = 110.0 Pka
Temperature = 25°C
Solution:
Pressure = 110.0 KPa (110/101 = 1.1 atm)
Temperature = 25°C (25+273 = 298.15 K)
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
n = PV/RT
n = 1.1 atm × 20.0 L / 0.0821 atm.L/ mol.K ×298.15 K
n = 22 / 24.5 /mol
n= 0.89 mol
Mass of NO₂:
Mass = number of moles × molar mass
Mass = 0.89 mol × 46 g/mol
Mass = 40.94 g
A 70.-kg person exposed to ⁹⁰Sr absorbs 6.0X10⁵ β⁻ particles, each with an energy of 8.74X10⁻¹⁴ J.
<h3>What is β⁻ particles ?</h3>
A beta particle, also known as a beta ray or beta radiation (symbol ), is a highly energetic, swiftly moving electron or positron that is released during the radioactive disintegration of an atomic nucleus. Beta decay occurs in two ways: decay and + decay, which result in the production of electrons and positrons, respectively.
In air, beta particles with an energy of 0.5 MeV have a range of roughly one meter; the range is energy-dependent.
Ionizing radiation of the sort known as beta particles is regarded, for the purposes of radiation protection, as being more ionizing than gamma rays but less ionizing than alpha particles. The damage to live tissue increases as the ionizing effect increases, but so does the radiation's penetration power.
To learn more about β⁻ particles from the given link:
brainly.com/question/10111545
#SPJ4