If Dave has 15 dollars and must spend 8 dollars of it on a book, then he will have 7 dollars left. If he then buys two of the same cards for his friends, the most he will be able to spend is half of 7 dollars for each of them, which will be 3 dollars and 50 cents.
Part I
We have the size of the sheet of cardboard and we'll use the variable "x" to represent the length of the cuts. For any given cut, the available distance is reduced by twice the length of the cut. So we can create the following equations for length, width, and height.
width: w = 12 - 2x
length: l = 18 - 2x
height: h = x
Part II
v = l * w * h
v = (18 - 2x)(12 - 2x)x
v = (216 - 36x - 24x + 4x^2)x
v = (216 - 60x + 4x^2)x
v = 216x - 60x^2 + 4x^3
v = 4x^3 - 60x^2 + 216x
Part III
The length of the cut has to be greater than 0 and less than half the length of the smallest dimension of the cardboard (after all, there has to be something left over after cutting out the corners). So 0 < x < 6
Let's try to figure out an x that gives a volume of 224 in^3. Since this is high school math, it's unlikely that you've been taught how to handle cubic equations, so let's instead look at integer values of x. If we use a value of 1, we get a volume of:
v = 4x^3 - 60x^2 + 216x
v = 4*1^3 - 60*1^2 + 216*1
v = 4*1 - 60*1 + 216
v = 4 - 60 + 216
v = 160
Too small, so let's try 2.
v = 4x^3 - 60x^2 + 216x
v = 4*2^3 - 60*2^2 + 216*2
v = 4*8 - 60*4 + 216*2
v = 32 - 240 + 432
v = 224
And that's the desired volume.
So let's choose a value of x=2.
Reason?
It meets the inequality of 0 < x < 6 and it also gives the desired volume of 224 cubic inches.
Answer:
The correct answer is €10.00
Step-by-step explanation:
50% of 40 is 20. 50% of 50 is 25, so what you do is just take 20 and multiply that by 0.5 or you can just take 40 and multiply that by 0.25.
I really hope this helps you out!
Answer:
9^-3= .0013717421
Step-by-step explanation:
Answer:
36
Step-by-step explanation:
AB + BC = AC
4m - 15 + 5m - 6 = 15
m - 21 = 15
m = 36