Answer:
(a) See attachment for tree diagram
(b) 24 possible outcomes
Step-by-step explanation:
Given


Solving (a): A possibility tree
If urn 1 is selected, the following selection exists:
![B_1 \to [R_1, R_2, R_3]; R_1 \to [B_1, R_2, R_3]; R_2 \to [B_1, R_1, R_3]; R_3 \to [B_1, R_1, R_2]](https://tex.z-dn.net/?f=B_1%20%5Cto%20%5BR_1%2C%20R_2%2C%20R_3%5D%3B%20R_1%20%5Cto%20%5BB_1%2C%20R_2%2C%20R_3%5D%3B%20R_2%20%5Cto%20%5BB_1%2C%20R_1%2C%20R_3%5D%3B%20R_3%20%5Cto%20%5BB_1%2C%20R_1%2C%20R_2%5D)
If urn 2 is selected, the following selection exists:
![B_2 \to [B_3, R_4, R_5]; B_3 \to [B_2, R_4, R_5]; R_4 \to [B_2, B_3, R_5]; R_5 \to [B_2, B_3, R_4]](https://tex.z-dn.net/?f=B_2%20%5Cto%20%5BB_3%2C%20R_4%2C%20R_5%5D%3B%20B_3%20%5Cto%20%5BB_2%2C%20R_4%2C%20R_5%5D%3B%20R_4%20%5Cto%20%5BB_2%2C%20B_3%2C%20R_5%5D%3B%20R_5%20%5Cto%20%5BB_2%2C%20B_3%2C%20R_4%5D)
<em>See attachment for possibility tree</em>
Solving (b): The total number of outcome
<u>For urn 1</u>
There are 4 balls in urn 1

Each of the balls has 3 subsets. i.e.
![B_1 \to [R_1, R_2, R_3]; R_1 \to [B_1, R_2, R_3]; R_2 \to [B_1, R_1, R_3]; R_3 \to [B_1, R_1, R_2]](https://tex.z-dn.net/?f=B_1%20%5Cto%20%5BR_1%2C%20R_2%2C%20R_3%5D%3B%20R_1%20%5Cto%20%5BB_1%2C%20R_2%2C%20R_3%5D%3B%20R_2%20%5Cto%20%5BB_1%2C%20R_1%2C%20R_3%5D%3B%20R_3%20%5Cto%20%5BB_1%2C%20R_1%2C%20R_2%5D)
So, the selection is:


<u>For urn 2</u>
There are 4 balls in urn 2

Each of the balls has 3 subsets. i.e.
![B_2 \to [B_3, R_4, R_5]; B_3 \to [B_2, R_4, R_5]; R_4 \to [B_2, B_3, R_5]; R_5 \to [B_2, B_3, R_4]](https://tex.z-dn.net/?f=B_2%20%5Cto%20%5BB_3%2C%20R_4%2C%20R_5%5D%3B%20B_3%20%5Cto%20%5BB_2%2C%20R_4%2C%20R_5%5D%3B%20R_4%20%5Cto%20%5BB_2%2C%20B_3%2C%20R_5%5D%3B%20R_5%20%5Cto%20%5BB_2%2C%20B_3%2C%20R_4%5D)
So, the selection is:


Total number of outcomes is:



Answer: B. X<12
Step-by-step explanation:
First we need to find out what number multipled by 4 is less than 56
4 x 12 = 48
56-48 = 8
And 4 is lower/less than 12 so that's why it's B
Answer:
Option B
x ≥ (-5)
Step-by-step explanation:
<h3>
<u>Given</u>;</h3>
So,
-3(x + 4) ≥ x + 8
-3x – 12 ≥ x + 8
Add both sides 12 we get,
-3x – 12 + 12 ≥ x + 8 + 12
-3x ≥ x + 20
Similarly, subtract x from both sides we get,
-3x – x ≥ x – x + 20
-4x ≥ 20
Then, divide both sides by (-4) we get,
-4x/(-4) ≥ 20/(-4)
x ≥ -5
Thus, The answer is x ≥ (-5).
Independent events mean that one event happening does not have to have the other event to happen.
The probability of both events happening is the product of the events.
The answer would be:
E. P(A ∩ B) = P(A) x P(B)
Answer:
<u><em>domain</em></u> is your <u><em>x value</em></u>, and <u><em>range</em></u> is your <u><em>y value.</em></u>
Step-by-step explanation: