1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dennis_Churaev [7]
3 years ago
5

What is the SURFACE AREA of the pyramid?

Mathematics
1 answer:
Tamiku [17]3 years ago
5 0

Answer:

85in²

Step-by-step explanation:

s = side

triangle: ((b x h) ÷ 2) x 4

((5 x 6) ÷ 2) x 4 = 60in

square: s2(squared not 2)

5² = 25

total sa: 25 + 60 = 85in²

You might be interested in
What is the exact value of tan 30° ? Enter your answer, as a simplified fraction, in the box.
Romashka [77]
Hmmm if you don't have a Unit Circle, this is a good time to get one, many you can find online.  Anyhow, check your unit circle for cos(30°) and sin(30°).

\bf tan(\theta)=\cfrac{sin(\theta)}{cos(\theta)}\qquad \qquad tan(30^o)=\cfrac{sin(30^o)}{cos(30^o)}
\\\\\\
tan(30^o)=\cfrac{\quad \frac{1}{2}\quad }{\frac{\sqrt{3}}{2}}\implies tan(30^o)=\cfrac{1}{2}\cdot \cfrac{2}{\sqrt{3}}\implies tan(30^o)=\cfrac{1}{\sqrt{3}}
\\\\\\
\stackrel{\textit{and now if we rationalize the denominator}}{\cfrac{1}{\sqrt{3}}\cdot \cfrac{\sqrt{3}}{\sqrt{3}}\implies \cfrac{\sqrt{3}}{(\sqrt{3})^2}\implies \cfrac{\sqrt{3}}{3}}
8 0
3 years ago
Read 2 more answers
We did not find results for: A measure of​ malnutrition, called the​ pelidisi, varies directly as the cube root of a​ person's w
asambeis [7]
\bf \qquad \qquad \textit{double proportional variation}\\\\
\begin{array}{llll}
\textit{\underline{y} varies directly with \underline{x}}\\
\textit{and inversely with \underline{z}}
\end{array}\implies y=\cfrac{kx}{z}\impliedby 
\begin{array}{llll}
k=constant\ of\\
\qquad  variation
\end{array}\\\\
-------------------------------\\\\

\bf \begin{cases}
p=pedalisi\\
w=weight\\
s=\textit{sitting height}
\end{cases}\quad 
\begin{array}{llll}
%pelidisi, varies directly as the cube root of a​ person's weight in grams and inversely as the​ person's sitting height in centimeters.
\textit{pelidisi varies directly}\\
\textit{as cube root of weight}\\
\textit{and inversely to }\\
\textit{sitting height}
\end{array}\implies p=\cfrac{k\sqrt[3]{w}}{s}\\\\
-------------------------------

\bf \textit{we know that }
\begin{cases}
w=48,820\\
s=78.7\\
p=100
\end{cases}\implies 100=\cfrac{k\sqrt[3]{48820}}{78.7}
\\\\\\
100\cdot 78.7=k\sqrt[3]{48820}\implies \cfrac{7870}{\sqrt[3]{48820}}=k
\\\\\\
thus\qquad \boxed{p=\cfrac{\frac{7870}{\sqrt[3]{48820}}\sqrt[3]{w}}{s}}
\\\\\\
\textit{now, what is \underline{p} when }
\begin{cases}
w=54,688\\
s=72.6
\end{cases}?\implies p=\cfrac{\frac{7870}{\sqrt[3]{48820}}\sqrt[3]{54688}}{72.6}

now, if that value is less than 100, then the fellow is "undernourished", otherwise, is overfed.
3 0
3 years ago
Find the number between 0.0004 and 0.0005
Margarita [4]

Answer:

0.00045

Step-by-step explanation:

This decimal is in the middle of these two numbers.

5 0
2 years ago
the vertices of PQR are P(-5,1), Q(-4,6), and R(-2,3), graph P"Q"R" after a composition of the transformations in the order they
horsena [70]

SOLUTION

We are told to translate; (x, y) to (x -8, y). This means we have to add - 8 to each value of x in P(-5,1), Q(-4,6), and R(-2,3).

In P(-5,1), x = -5 and y = 1

In Q(-4,6), x = -4 and y = 6 and

In R(-2,3), x = -2 and y = 3

\begin{gathered} P(-5,\text{ 1) translates to (-5 -8, 1) }\rightarrow P^i(-13,\text{ 1)} \\ Q(-4,\text{ 6) translates to (-4 -8, 6) }\rightarrow Q^i(-12,\text{ 6)} \\ R(-2,\text{ 3) translates to (-2 -8, 3) }\rightarrow R^i(-10,\text{ 3)} \end{gathered}

For the dilation centered at the origin k =2, simply multiply the value of k, which is 2 into the translations.

\begin{gathered} At\text{ K = 2,  }P^i(-13,\text{ 1)  }\rightarrow\text{   }2(-13,\text{ 1)  }\rightarrow\text{  }P^{ii}(-26,\text{ 2)} \\ Q^i(-12,\text{ 6)  }\rightarrow\text{  }2(-12,\text{ 6)  }\rightarrow\text{   Q}^{ii}(-24,\text{ 12)} \\ R^i(-10,\text{ 3)   }\rightarrow\text{   }2(-10,\text{ 3)  }\rightarrow\text{   R}^{ii}(-20,\text{ 6)} \end{gathered}

5 0
1 year ago
✓-32<br><br>imaginary numbers​
Lynna [10]

Answer:

<em><u>√</u></em><em><u>-32 imaginary numbers</u></em>

\sqrt{ - 32} \\   =  \sqrt{ - 1 \times 16 \times 2}  \\  =  \sqrt{ - 1}  \times  \sqrt{16}  \times  \sqrt{2}  \\  =\boxed{ 4 \sqrt{2} i}

<h3>4√2i is the right answer.</h3>
8 0
3 years ago
Other questions:
  • What is the domain of the funxtion f(x)=x+1/x^2-6+8
    8·1 answer
  • Why do you suppose that area is always expressed in terms of square units?
    10·1 answer
  • What is the simplest form of 15 75
    5·1 answer
  • Solve the equation on the interval 0 less than or equals theta less than 2 pi 0≤θ&lt;2π. 2 cosine theta plus 1 equals 0 2cosθ+1=
    15·1 answer
  • If f(x) = x2 – 2x, find:<br> f(-3) = [?]
    9·2 answers
  • Ayo if anyone knows this
    13·1 answer
  • Solve the inequality below: <br><br> -2(x-5)&lt;4
    8·1 answer
  • ( 9 − p ) ( 9 − q ) ( 9 − r ) ( 9 − s ) = 9. What is the value of p + q + r + s ?
    7·1 answer
  • Divide x4-3x3-5X2-7x-9 by x + 1.
    11·1 answer
  • HELPPPP!!!!!!!!!!!!!
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!