Answer:
Volume is 
Solution:
As per the question:
Diameter, d = 40 m
Radius, r = 20 m
Now,
From north to south, we consider this vertical distance as 'y' and height, h varies linearly as a function of y:
iff
h(y) = cy + d
Then
when y = 1 m
h(- 20) = 1 m
1 = c.(- 20) + d = - 20c + d (1)
when y = 9 m
h(20) = 9 m
9 = c.20 + d = 20c + d (2)
Adding eqn (1) and (2)
d = 5 m
Using d = 5 in eqn (2), we get:

Therefore,

Now, the Volume of the pool is given by:

where
A = 

Thus




![V = [- 533.33cos\theta + 1000\theta]_{0}^{2\pi}](https://tex.z-dn.net/?f=V%20%3D%20%5B-%20533.33cos%5Ctheta%20%2B%201000%5Ctheta%5D_%7B0%7D%5E%7B2%5Cpi%7D)

The answer is x=6. I double checked the work and am 100% sure thats the answer
The property that is being described in the statement "The sum of the components of anything equals the whole thing" would be the Partition Postulate. It is simply the whole is equal to the sum of its parts. For instance we have a line where it contains points W, X, Y and Z, then WX + XY + YZ = WZ.
We know that
the equation of a sphere is
(x-h)²+(y-k)²+(z-l)²=r²
where (h,k,l) is the center and r is the radius
we have
x²+y²+z²<span>−2x−4y+8z+17=0
</span>
Group terms that contain the same variable, and move the
constant to the opposite side of the equation
(x²+2x)+(y²-4y)+(z²+8z)=-17
<span>Complete
the square. Remember to balance the equation by adding the same constants
to each side
</span>(x²+2x+1)+(y²-4y+4)+(z²+8z+16)=-17+1+4+16
(x²+2x+1)+(y²-4y+4)+(z²+8z+16)=4
Rewrite as perfect squares
(x+1)²+(y-2²)+(z+4)²=4
(x+1)²+(y-2²)+(z+4)²=2²
the center is the point (-1,2,-4) and the radius is 2 units
Answer:
-2/3
Step-by-step explanation:
A rational number is a number that can be expressed by a fraction so when y add to fractions it’s a rational number.