From the de Moivre's we have,
<span>
(cosθ+isinθ)^n=cos(nθ)+isin(nθ)
</span><span>
Therefore,
</span><span>
R((cosθ+isinθ)^5)=cos(5θ)I((cosθ+isinθ)^5)=sin(5θ)
</span><span>
Simplifying,
</span><span>
cos^5(θ)−10(sin^2(θ))(cos^3(θ))+5(sin^4(θ))(cosθ)=cos(5θ) </span><span>
</span>
Answer:
130
Step-by-step explanation:
Answer:
(3x-1)(2x+1)
Step-by-step explanation:
1-6x^2-x=0
-6x^2-x+1=0
6x^2+x-1=0
6x^2+(3-2)x-1=0
6x^2+3x-2x-1=0
3x(2x+1)-1(2x+1)=0
(3x-1)(2x+1)=0
So the factor is (3x-1)(2x+1)
Solution:
<u>Note that:</u>
- Given angles: w + 8° and 48°
- w + 8 + 48 = 180
<u>Solve for w in the equation "w + 8 + 48 = 180".</u>
- => w + 8 + 48 = 180
- => 56 + w = 180
- => w = 180 - 56
- => w = 124°
The value of w is 124.